A Non holonomic constraints in classical mechanics textbook

AI Thread Summary
To learn about non-holonomic constraints in Lagrangian and Hamiltonian mechanics, consider exploring Greenwood's "Classical Dynamics" and "Advanced Dynamics." Additionally, the work by Neimark and Fufaev titled "Dynamics of Nonholonomic Systems" is recommended for a deeper understanding. Many users express concerns regarding the accuracy of Goldstein's 3rd edition on this topic. The suggested resources align well with the mathematical level presented in Goldstein. Engaging with these texts will enhance comprehension of non-holonomic systems in classical mechanics.
Kashmir
Messages
466
Reaction score
74
I want to learn about the non holonomic case in lagrangian and Hamiltonian mechanics. I've seen that many people say that Goldstein 3rd ed is wrong there.
Where should I go to learn it.
My mathematics level is at the level Goldstein uses.
Please help
 
Physics news on Phys.org
You can try greenwood's books:
- classical dynamics
- advanced dynamics.
 
u I. Neimark annd N. A. Fufaef, “Dynamics of Nonholonomic Systems,” Vol. 33, Translations of Mathematical Monographs, American Mathematical Society, Providence, 1972.
 
  • Like
  • Informative
Likes dextercioby, andresB and vanhees71
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top