- #1
Malamala
- 308
- 27
Hello! I am trying to use the wavefunctions of a Morse potential as defined in the link provided. They define a parameter ##z## and the wavefunctions are in terms of z. In my particular case, given their definitions, I have ##\lambda = 132.19377##, ##a=1.318 A^{-1}## and ##R_e = 2.235 A##. I am not sure how to check the normalization of that function. Naively, I would expect to calculate:
$$\int_{z_i}^{z_f}{\psi_N(z)^2}dz$$
and this should be equal to one. However I am getting -263.388. For the limits of integration, I assume that ##z_i## corresponds to the case when ##R=0## i.e. ##z_i = 2\lambda e^{aR}= 5029.85## and ##z_f =0## i.e. when ##R = \infty##. I am pasting below the Mathematica code I am using for the calculations for reference:
However, if I instead integrate
$$\int_{z_i}^{z_f}{\psi_N(z)^2/z}dz$$
I get one, as expected. Am I doing something wrong? Is the normalization defined differently? Or are my integration bounds wrong? I checked the formula on multiple websites and it seems to be correct, so I am not sure why I need to add by hand that ##1/z## Thank you!
$$\int_{z_i}^{z_f}{\psi_N(z)^2}dz$$
and this should be equal to one. However I am getting -263.388. For the limits of integration, I assume that ##z_i## corresponds to the case when ##R=0## i.e. ##z_i = 2\lambda e^{aR}= 5029.85## and ##z_f =0## i.e. when ##R = \infty##. I am pasting below the Mathematica code I am using for the calculations for reference:
Code:
lmbda0 = 132.19377;
a0 = 1.318;
Re0 = 2.235;
xe0 = a0*Re0;
n0 = 0;
alpha0 = 2 lmbda0 - 2 n0 - 1;
f[R_?NumericQ] := (Exp[0.5*(Log[n0!*alpha0] - Log[Gamma[2 lmbda0 - n0]]) + (lmbda0 - n0 - 0.5) Log[z] - 0.5 *z + Log[LaguerreL[n0, alpha0, z]]])^2;
Plot[f[z], {z, 411.145, 163.424}]
NIntegrate[f[z], {z, 500, 100}]
However, if I instead integrate
$$\int_{z_i}^{z_f}{\psi_N(z)^2/z}dz$$
I get one, as expected. Am I doing something wrong? Is the normalization defined differently? Or are my integration bounds wrong? I checked the formula on multiple websites and it seems to be correct, so I am not sure why I need to add by hand that ##1/z## Thank you!