Notation of ideals in ring theory

erraticimpulse
Messages
54
Reaction score
0
So right now I'm trying to solve this problem in ring theory for homework. The question pertains to proving that in a PID, D, if a,b are elements of D then the gcd of a and b can be written as a linear combination. In any event I know where I have to go but I'm stuck on this one bit of notation.

<a,b> = <d>.

I've never seen notation for an ideal like that with 2 elements separated by a comma. I'd appreciate any insight into this.

Oh and here's the site from wolfram where I originally discovered it:
http://mathworld.wolfram.com/PrincipalIdealDomain.html
 
Physics news on Phys.org
<a,b> is any linear combination of a and b.

That is, <a,b>={as+bt|s,t are in R}
 
Thanks man. You rock my socks!
 
Okay well, it turned out that the idea from wolfram was more confusing than helpful. There's a scarce amount of information in my text and notes on PID's. The only conjectures that I feel safe in making: if given gcd(a,b)=d then gcd(a,d)=d and gcd(b,d)=d. Not sure how helpful those are though. I think what I'm most confused about is Wolfram's assertion that <a,b> is an ideal for any a,b. I can't verify this anywhere.
 
Nevermind, I figured it out. Thanks for the insight Ziox!
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top