MHB Number of possible outcomes where Head is recorded for a coin toss

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Head
AI Thread Summary
The probability of getting exactly 2 heads in 4 coin tosses can be calculated using the binomial probability formula, yielding a result of 3/8. There are 16 total possible outcomes when tossing a coin 4 times, with 6 outcomes resulting in exactly 2 heads. The calculation involves determining the number of combinations of 2 heads in 4 tosses, which is represented as 4 choose 2. Each individual outcome has a probability of 1/16, but the presence of multiple arrangements leads to the final probability of 3/8. This method is more efficient than drawing a decision tree for larger sample spaces.
tmt1
Messages
230
Reaction score
0
A coin is tossed 4 times.

Is there a way to determine mathematically what is the probability that exactly 2 heads occur?

By drawing a decision tree I can determine that it is 6/16, but this seems like an arduous process for larger numbers.
 
Physics news on Phys.org
Using the binomial probability formula, we find:

$$P(X)={4 \choose 2}\left(\frac{1}{2}\right)^2\cdot\left(\frac{1}{2}\right)^{4-2}=\frac{6}{16}=\frac{3}{8}$$
 
Writing 'em out helps but I wouldn't want to attempt that on a "large" sample space.

There are 16 possible outcomes and 6 possibilities where there are exactly two heads. 6/16 = 3/8.
 
Or: one possible outcome for 'two heads in four tosses" is HHTT. The probability the coin comes up heads or tails on each toss is 1/2 so the probability of that is (1/2)^4= 1/16.

But there are \frac{4!}{2!2!}= \frac{4(3)(2)(1)}{(2(1))(2(1))}= \frac{4(3)}{2}= 6 different possible orders (they are "HHTT", "HTHT", "HTTH", "THTH", "THHT", and "TTHH" but you don't have to write them out to know there are 6) so that the probability of "two heads in four coin tosses" is \frac{6}{16}= \frac{3}{8}
 
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top