Number theory - show divergence of ∑1/p for prime p

drjohnsonn
Messages
11
Reaction score
1
1. show that the sum of. The reciprocals of the primes is divergent. I am reposying this here under homework and deleting the inital improperly placed post
2. Theorem i use but don't prove because its assumed thw student has already lim a^1/n = 1.
The gist of the approach I took is that∑1/p = log(e^∑1/p) = log(∏e^1/p) and logx→ ∞ as x→∞.
Proof outline: let ∑1/p = s(x). (...SO I can write this easily on tablet) and note that e^s(x) diverges since e^1/p > 1 for any p and the infinite product where every term exceeds 1 is divergent. Then loge^s(x) diverges as logs as x→∞ would. Thus, since log(e^s(x)= s(x), the sum is found to be divergent

Homework Statement


Edit: this is wrong and i finished the proof using very little ofwhati tried here so no need to respond
 
Last edited:
Physics news on Phys.org
drjohnsonn said:
the infinite product where every term exceeds 1 is divergent.
Not so.
Any infinite sum of positive terms ∑an could be written as ln(∏ean)
 
Indeed. That whopper of an error was pointed out. Can't believe i did that but alas, excitement of an easy solution was blinding.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top