MHB Numbers with a quadratic property

AI Thread Summary
The discussion revolves around finding pairs of positive integers \(x\) and \(y\) that satisfy the equation \(2x^2 + x = 3y^2 + y\). It is noted that the difference \(x - y\) is a perfect square, leading to the substitution \(y = x - u^2\). The equation is transformed into a quadratic in terms of \(x\), resulting in \(x = 3u^2 + v\), where \(v\) must also be an integer. The solutions yield an infinite sequence of positive integer pairs, with the smallest identified pair being \( (22, 18) \). The discussion emphasizes the mathematical exploration of quadratic forms and integer solutions on a hyperbola.
Opalg
Gold Member
MHB
Messages
2,778
Reaction score
13
A recent https://mathhelpboards.com/potw-secondary-school-high-school-students-35/problem-week-411-apr-5th-2020-a-27196.html#post119308 asked about properties of a pair of positive integers $x$, $y$ such that $2x^2+x = 3y^2+y$. But it is not obvious that any such pairs exist. So the challenge is, are there any such pairs of positive integers? If so, what is the smallest such pair? After that, what is the next smallest pair?
 
Mathematics news on Phys.org
Opalg said:
A recent https://mathhelpboards.com/potw-secondary-school-high-school-students-35/problem-week-411-apr-5th-2020-a-27196.html#post119308 asked about properties of a pair of positive integers $x$, $y$ such that $2x^2+x = 3y^2+y$. But it is not obvious that any such pairs exist. So the challenge is, are there any such pairs of positive integers? If so, what is the smallest such pair? After that, what is the next smallest pair?
Hint:
[sp]As shown in the https://mathhelpboards.com/potw-secondary-school-high-school-students-35/problem-week-411-apr-5th-2020-a-27196.html#post119308, $x-y$ is a perfect square, say $x-y = u^2$. Then $y = x-u^2$. Use that to find and solve an equation for $x$ is terms of $u$. What condition must $u$ satisfy to ensure that $x$ is an integer?[/sp]
 
[sp]
As a matter of fact, I was interested in that very question. The question is about finding points with integer coordinates on a hyperbola, and this is a classical problem on representation by quadratic forms. I wrote something about it here. Sorry, it's in French, but ‶the equations speak for themselves″ :)
[/sp]
 
Congratulations to castor28 for his solution. Mine is quite similar:

[sp]Substituting $y=x-u^2$, the equation $2x^2+x = 3y^2+y$ becomes $$2x^2+x = 3(x-u^2)^2 + x - u^2 = 3x^2 - 6u^2x + 3u^4 + x - u^2,$$ $$x^2 - 6u^2x + u^2(3u^2-1) = 0,$$ $$x = 3u^2 \pm\sqrt{u^2(6u^2 + 1)}.$$ We want $x$ to be positive, so take the positive square root to get $x = 3u^2 + uv$, where $v = \sqrt{6u^2+1}$. We also want $v$ to be an integer, so we want integer solutions to the equation $v^2 = 6u^2+1$. That is a https://mathhelpboards.com/showthread.php?2905-The-Pell-Sequence-type equation. To see how to solve it, divide by $u^2$ to get $\left(\frac vu\right)^2 = 6 + \frac1{u^2}$. If $u$ is large, then $\frac1{u^2}$ is very small and so $\frac vu$ will be close to $\sqrt6$. The best rational approximations to $\sqrt6$ come from its continued fraction convergents. The helpful continued fraction calculator here gives this table:

https://www.physicsforums.com/attachments/9693._xfImport

The convergents $\frac vu$ are alternately slightly larger and slightly smaller than $\sqrt6$, corresponding to solutions of $v^2 = 6u^2+1$ and $v^2 = 6u^2-1$. So from alternate rows of that table we get

$$\begin{array}{r|r|r|r}v&u&x=u(3u+v)&y=u(2u+v) \\ \hline 5&2&22&18 \\ 49&20&2180&1780 \\ 485&198&213642&174438 \\ 4801&1960&20934760&17093160\end{array}$$

After that, the numbers increase rapidly, giving an infinite sequence of positive integer solutions of $2x^2+x = 3y^2+y$. (I'm pleased to see that my numbers tally exactly with castor28's!)[/sp]
 

Attachments

  • Screenshot 2020-04-13 at 12.38.51.png
    Screenshot 2020-04-13 at 12.38.51.png
    11.9 KB · Views: 140
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top