I Numerically how to approximate exponential decay in a discrete signal

AI Thread Summary
To approximate exponential decay in a discrete signal using Laplace or Z-transform methods, the discussion emphasizes the need for a model that reflects the known system behavior, such as f(t) = A exp(-αt)cos(2πft + φ). While regression techniques are acknowledged, the focus is on finding a pseudo-analytic approach that aligns with the exponential decay requirement. The conversation highlights the importance of specifying prior knowledge about the system, as this can significantly influence the choice of modeling techniques. Curve fitting is suggested as a potential method, but it must adhere to the constraints of continuity and the specific functional form of the data. The discussion ultimately points to the complexity of the data and the necessity for a tailored approach to accurately capture its characteristics.
cppIStough
Messages
24
Reaction score
2
Given a vector of numbers, say [exp(-a t) ] for t - [1, 2, 3, 4, 5] and choose maybe a = -2.4, how can I approximate -2.4 from using Laplace transform methods?

I know you can use regression for this, but I'd like to know the Laplace transform (or Z-transform since it is discrete) approach.
 
Mathematics news on Phys.org
Say given number sequence is f(t), plot t - log f(t) and find the approxmate line to connect the points and its tan. It is my idea, though Laplace transform plays no role here.
 
anuttarasammyak said:
Say given number sequence is f(t), plot t - log f(t) and find the approxmate line to connect the points and its tan. It is my idea, though Laplace transform plays no role here.
yea this is regression. was looking for laplace transform or some psuedo-analytic manner
 
This would be about statistics and curve fitting, I think. You'll have some basic assumptions as constraints for your model, things like continuity, that you haven't told us. Then I would just use a polynomial fit. It 's not that that's the correct answer, it will be just as likely to be wrong as other models. But since you haven't specified any prior knowledge of the nature of the system producing the data, I don't see a better approach.

Or, maybe I misunderstood and you KNOW that the system is ##e^{-at}##, in which case the answer is almost trivial.
 
DaveE said:
This would be about statistics and curve fitting, I think. You'll have some basic assumptions as constraints for your model, things like continuity, that you haven't told us. Then I would just use a polynomial fit. It 's not that that's the correct answer, it will be just as likely to be wrong as other models. But since you haven't specified any prior knowledge of the nature of the system producing the data, I don't see a better approach.

Or, maybe I misunderstood and you KNOW that the system is ##e^{-at}##, in which case the answer is almost trivial.
The data can be chaotic. Even curve fitting assumes a functional form (polynomial, which I cannot use, must be exponential decay and sinusoidal, so I think ##f(t) = A \exp(-\alpha t)\cos(2\pi f t + \phi)##.

I saw this post and thought there would be a nice implementation for extracting both the sinusoidal frequency and exponential decay:
https://dsp.stackexchange.com/quest...a-signal-into-exponentally-decaying-sinusoids
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top