- #1
ergospherical
- 1,072
- 1,365
I have a PDE to solve numerically on the region ##x \in [0,1]## and ##t \in (0, \infty)##. It is of the form:$$\frac{\partial f(x,t)}{\partial t} = g(x,t) + \int_0^1 h(x, x') f(x', t) dx'$$The second term is the tricky part. The change in ##f(x,t)## at ##x## depends on the value ##f(x',t)## of every other point ##x'## in the space.
In discretized form, it is something like$$f(x_i,t_{j+1}) = f(x_i,t_j) + \Delta t \left[ g(x_i,t_i) + \sum_{j \neq i} h(x_i, x_j) f(x_j, t_i) \right]$$How can I apply an accurate scheme like Runge-Kutta to this system?
In discretized form, it is something like$$f(x_i,t_{j+1}) = f(x_i,t_j) + \Delta t \left[ g(x_i,t_i) + \sum_{j \neq i} h(x_i, x_j) f(x_j, t_i) \right]$$How can I apply an accurate scheme like Runge-Kutta to this system?