- #141
- 10,354
- 1,527
A.T. said:That is an interesting comparison. One difference seems to be that "Zeno time" is the result of an arbitrary mathematical mapping, that doesn't have any physical significance. The coordinate time in Schwarzshild coordinates on the other hand, can be interpreted as the proper time of a clock at infinity, which is a observable physical quantity.
It's not really the proper time of a clock at infinity - it's still a coordinate time. I'd describe it as the coordinate time of a static observer, with the coordinate clocks normalized to run at the same rate as proper clocks at infinity.
It seems rather strange to me to ignore the readings of actual, physical clocks (proper time) in favor of some abstract coordinate time, but it seems all-too-common. My speculation is that this is based on a desire for the "absolute time" of Newtonian physics.
[add]
Static observers do have _some_ physical significance where they exist , which is outside the event horizon. This significance is derived mostly form the Killing vector field of their timelike worldlines. The Killing vector still exists at the event horizon, but it's null, so it doesn't represent any sort of "observer".
The coordinate system of static observers, where they exist, has about the same relevance to an infalling observer as the coordinate system of some "stationary" frame to somoene rapidly moving. Which in my opinion is "not very much". But I suppose opinions could vary on this point, it's not terribly critical.
The biggest difference here, and another significant underlying issue, is that static observers cease to exist at the event horizon. This makes their coordinates there problematic, as you're trying to defie a coordinate system for an observer that doesn't exist anymore. This isn't any sort of breakdown in physics - it's a breakdown of the concept of static observers.
For any actual physical observer, the horizon will always be approaching them at "c" - because any physical observer will have a timelike worldline, and the horizon is a null surface. This isn't really very compatabile with the event horizon as a "place". This is why space-time diagrams that represent the event horizon as a null surface (such as the Kruskal or penrose diagram) are a good aid to understanding the physics there, and why Schwarzschild coordinates are not.
Another sub-issue (of many) is the absolute refusal of certain posters to even consider any other coordinate systems other than Schwarzschild as having any relevance to the physics. Which gives rise to severe problems, as Schwarzschild coordinates are ill-behaved at the event horizon, for the reasons I've previously aluded to (the non-existence of static observers upon which the coordinate system is based).
This ill behavior is hardly any secret - pretty much ANY textbook is going to tell you the same thing.
Last edited: