On the Validity of Swapping Dummy Indices in Tensor Manipulation

AI Thread Summary
The discussion centers on proving that a symmetric second rank tensor remains symmetric under rotation transformations. The key equation used is T_{i_1 i_2}' - T_{i_2 i_1}' = r_{i_1 j_1} r_{i_2 j_2} T_{j_1 j_2} - r_{i_2 j_1} r_{i_1 j_2} T_{j_1 j_2}, where the validity of swapping dummy indices is questioned. By applying property (a), which states that a tensor vanishing in one frame vanishes in all related frames, the proof shows that T_{i_1 i_2}' - T_{i_2 i_1}' can be simplified to demonstrate symmetry. The discussion emphasizes the importance of understanding dummy indices in tensor manipulation. Ultimately, the validity of the index swapping is affirmed, supporting the conclusion that symmetric tensors retain their properties under rotation.
Wannabe Physicist
Messages
17
Reaction score
3
Homework Statement
Using property (a), show that a symmetric tensor ##T_{i_1 i_2 }## remains symmetric under all rotations.
Relevant Equations
(1) Transformation law under rotation: ##T_{i_1 i_2 }' = r_{i_1 j_1} r_{i_2 j_2} T_{j_1 j_2}##
(2) Definition of symmetric tensor: ##T_{i_1 i_2} - T_{i_2 i_1} = 0##
Property (a) simply states that a second rank tensor that vanishes in one frame vanishes in all frames related by rotations.

I am supposed to prove: ##T_{i_1 i_2} - T_{i_2 i_1} = 0 \implies T_{i_1 i_2}' - T_{i_2 i_1}' = 0##

Here's my solution. Consider,

$$T_{i_1 i_2}' - T_{i_2 i_1}' = r_{i_1 j_1} r_{i_2 j_2} T_{j_1 j_2} - r_{i_2 j_1} r_{i_1 j_2} T_{j_1 j_2}$$

**Now consider this statement:** Because ##j_1## and ##j_2## are dummy indices and both are summed from 1 to 3, we can swap these indices exclusively for the second term in the above expression.

If I assume the above statement it is easy to obtain

$$T_{i_1 i_2}' - T_{i_2 i_1}' = r_{i_1 j_1} r_{i_2 j_2} T_{j_1 j_2} - r_{i_2 j_2} r_{i_1 j_1} T_{j_2 j_1}$$
$$T_{i_1 i_2}' - T_{i_2 i_1}' = r_{i_1 j_1} r_{i_2 j_2} [T_{j_1 j_2} - T_{j_2 j_1}]$$And then using property (a), I can prove the required statement.

But I am not sure if the statement of swapping indices is valid.
 
Physics news on Phys.org
Wannabe Physicist said:
Homework Statement:: Using property (a), show that a symmetric tensor ##T_{i_1 i_2 }## remains symmetric under all rotations.
Relevant Equations:: (1) Transformation law under rotation: ##T_{i_1 i_2 }' = r_{i_1 j_1} r_{i_2 j_2} T_{j_1 j_2}##
(2) Definition of symmetric tensor: ##T_{i_1 i_2} - T_{i_2 i_1} = 0##

But I am not sure if the statement of swapping indices is valid.
It simply says obviously
\sum_{i=1}^n A_i B_i=\sum_{j=1}^n A_j B_j=\sum_{\gamma=1}^n A_\gamma B_\gamma
where ##\gamma=\{a,b,c,...,\alpha,\beta,...,\xi,\eta,\zeta,...\}## any symbol you like.
 
Oh right! Thanks a lot!
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top