- #1
- 114
- 0
To help me in understanding this procedure, I read the fifth chapter of THE DETERMINATION OF ORBITS by A. D. Dubyago, as translated from Russian into English by the RAND Corporation. Much of the nomenclature used in this exposition is patterned after Dubyago.
Initial Data.
For i=1 to 3
The time of observation: t(i)
The position of the sun: Xs(i), Ys(i), Zs(i)
The unit vector in the direction of the planet: a(i), b(i), c(i)
The position vectors are in local celestial coordinates.
Handy Constants.
k = 0.01720209895 (mean motion of Earth, radians per day)
A = 0.00577551833 (days required for light to travel 1 AU)
First Approximation.
tau(1) = k {t(3)-t(2)}
tau(2) = k {t(3)-t(1)}
tau(3) = k {t(2)-t(1)}
nc(1) = tau(1)/tau(2)
nc(3) = tau(3)/tau(2)
nu(1) = tau(1) tau(3) {1 + nc(1)} / 6
nu(3) = tau(1) tau(3) {1 + nc(3)} / 6
D = a(2) { b(3) c(1) - b(1) c(3) } + b(2) { c(3) a(1) - c(1) a(3) } + c(2) { a(3) b(1) - a(1) b(3) }
For i=1 to 3
d(i) = Xs(i) { c(1) b(3) - c(3) b(1) } + Ys(i) { a(1) c(3) - a(3) c(1) } + Zs(i) { b(1) a(3) - b(3) a(1) }
For i=1 to 3
Re(i) = { Xs(i)^2 + Ys(i)^2 + Zs(i)^2 }^0.5
For i=1 to 3
q(i) = -2 { a(i) Xs(i) + b(i) Ys(i) + c(i) Zs(i) }
K0 = { d(2) - d(1) nc(1) - d(3) nc(3) } / D
L0 = { d(1) nu(1) + d(3) nu(3) } / D
Let r(2) be the distance from the sun to the planet at time 2
Let p(2) be the distance from Earth to the planet at time 2.
We must solve these two equations simultaneously for r(2) and p(2):
p(2) = K0 - L0 / r(2)^3
r(2) = { Re(2)^2 + q(2) p(2) + p(2)^2 }^0.5
This leads to an 8th degree polynomial in r(2):
f{r(2)} = r(2)^8 - { Re(2)^2 + q(2) K0 + K0^2 } r(2)^6 + L0 {q(2) + 2 K0} r(2)^3 - L0^2
f{r(2)} = 0
We will use Newton's method to get the answer.
df/dr(2) = 8 r(2)^7 - 6 { Re(2)^2 + q(2) K0 + K0^2 } r(2)^5 + 3 L0 {q(2) + 2 K0} r(2)^2
As an initial guess at r(2)...
r2(j=0) = 1.0
Then...
Repeat over j
r2(j+1) = r2(j) - f{r2(j)} / df/dr2(j)
Until abs{ r2(j+1) - r2(j) } < 1.0E-12
Assign to r(2) the converged value from the loop:
r(2) = r2(j+1)
p(2) = K0 - L0 / r(2)^3
n(1) = nc(1) + nu(1) / r(2)^3
n(3) = nc(3) + nu(3) / r(2)^3
Q1 = n(1) Xs(1) - Xs(2) + n(3) Xs(3) + a(2) p(2)
Q2 = n(1) Ys(1) - Ys(2) + n(3) Ys(3) + b(2) p(2)
Q3 = n(1) Zs(1) - Zs(2) + n(3) Zs(3) + c(2) p(2)
Q4 = a(1) - a(3) c(1) / c(3)
Q5 = b(1) - b(3) a(1) / a(3)
Q6 = b(3) - b(1) a(3) / a(1)
Q7 = a(3) - a(1) c(3) / c(1)
p(1) = { [ Q1 - a(3) Q3 / c(3) ] / [ n(1) Q4 ] + [ Q2 - b(3) Q1 / a(3) ] / [n(1) Q5] } / 2
p(3) = { [ Q2 - b(1) Q1 / a(1) ] / [ n(3) Q6 ] + [ Q1 - a(1) Q3 / c(1) ] / [n(3) Q7] } / 2
r(1) = { Re(1)^2 + q(1) p(1) + p(1)^2 }^0.5
r(3) = { Re(3)^2 + q(3) p(3) + p(3)^2 }^0.5
Correction for Planetary Abberation.
Light doesn't travel instantaneously. We must correct the initial times for the amount of time it took light to travel from the planet to our eyes. This is done only once, after the first approximation, but before the 2nd approximation. It will not be done between any other successive approximations.
For i=1 to 3
tc(i) = t(i) - A p(i)
Where A is the time (in days) required for light to travel 1 astronomical unit.
tau(1) = k {tc(3)-tc(2)}
tau(2) = k {tc(3)-tc(1)}
tau(3) = k {tc(2)-tc(1)}
nc(1) = tau(1)/tau(2)
nc(3) = tau(3)/tau(2)
Recursive Procedure for Successive Approximations.
For i=1 to 3
x(i) = a(i) p(i) - Xs(i)
y(i) = b(i) p(i) - Ys(i)
z(i) = c(i) p(i) - Zs(i)
K(1) = { 2 [ r(2) r(3) + x(2) x(3) + y(2) y(3) + z(2) z(3) ] }^0.5
K(2) = { 2 [ r(1) r(3) + x(1) x(3) + y(1) y(3) + z(1) z(3) ] }^0.5
K(3) = { 2 [ r(1) r(2) + x(1) x(2) + y(1) y(2) + z(1) z(2) ] }^0.5
h(1) = tau(1)^2 / { K(1)^2 [ K(1)/3 + ( r(2)+r(3) )/2 ] }
h(2) = tau(2)^2 / { K(2)^2 [ K(2)/3 + ( r(1)+r(3) )/2 ] }
h(3) = tau(3)^2 / { K(3)^2 [ K(3)/3 + ( r(1)+r(2) )/2 ] }
For i=1 to 3
Begin
Queasy1 = (11/9) h(i)
Queasy2 = Queasy1
Repeat
Queasy3 = Queasy2
Queasy2 = Queasy1 / ( 1 + Queasy2)
Until abs( Queasy2 - Queasy3 ) / Queasy3 < 1E-12;
Yippy(i) = 1 + (10/11) Queasy2
End
n(1) = nc(1) yippy(2) / yippy(1)
n(3) = nc(3) yippy(2) / yippy(3)
nu(1) = nc(1) r(2)^3 { yippy(2) / yippy(1) - 1 }
nu(3) = nc(3) r(2)^3 { yippy(2) / yippy(3) - 1 }
K0 = { d(2) - d(1) nc(1) - d(3) nc(3) } / D
L0 = { d(1) nu(1) + d(3) nu(3) } / D
p(2) = K0 - L0 / r(2)^3
r(2) = { Re(2)^2 + q(2) p(2) + p(2)^2 }^0.5
f{r(2)} = r(2)^8 - { Re(2)^2 + q(2) K0 + K0^2 } r(2)^6 + L0 {q(2) + 2 K0} r(2)^3 - L0^2
f{r(2)} = 0
df/dr(2) = 8 r(2)^7 - 6 { Re(2)^2 + q(2) K0 + K0^2 } r(2)^5 + 3 L0 {q(2) + 2 K0} r(2)^2
The customary initial guess at r(2)...
r2(j=0) = 1.0
Repeat over j
r2(j+1) = r2(j) - f{r2(j)} / df/dr2(j)
Until abs{ r2(j+1) - r2(j) } < 1.0E-12
Assign to r(2) the converged value from the loop:
r(2) = r2(j+1)
p(2) = K0 - L0 / r(2)^3
Q1 = n(1) Xs(1) - Xs(2) + n(3) Xs(3) + a(2) p(2)
Q2 = n(1) Ys(1) - Ys(2) + n(3) Ys(3) + b(2) p(2)
Q3 = n(1) Zs(1) - Zs(2) + n(3) Zs(3) + c(2) p(2)
Q4 = a(1) - a(3) c(1) / c(3)
Q5 = b(1) - b(3) a(1) / a(3)
Q6 = b(3) - b(1) a(3) / a(1)
Q7 = a(3) - a(1) c(3) / c(1)
p(1) = { [ Q1 - a(3) Q3 / c(3) ] / [ n(1) Q4 ] + [ Q2 - b(3) Q1 / a(3) ] / [n(1) Q5] } / 2
p(3) = { [ Q2 - b(1) Q1 / a(1) ] / [ n(3) Q6 ] + [ Q1 - a(1) Q3 / c(1) ] / [n(3) Q7] } / 2
r(1) = { Re(1)^2 + q(1) p(1) + p(1)^2 }^0.5
r(3) = { Re(3)^2 + q(3) p(3) + p(3)^2 }^0.5
Repeat this whole section (Recursive Procedure for Successive Approximations) until your values for r(i) converge.
MORE ORBIT DETERMINATION IN POSTS TO FOLLOW.
Example (after Dubyago with improved accuracy).
Initial data. In practice, what you determine observationally about a planet's position is right ascension and declination. So I'll present those as initial data and calculate a(i), b(i), c(i) from them. Remember that Xs,Ys,Zs is the position of the sun, while RA and DEC pertain to the planet whose orbit we're trying to determine. (By the way, the planet is asteroid 1590 Tsiolkovskaja, also known as 1933 NA.)
t(1) = JD 2427255.460417 = 1 July 1933, 23h 3m 0s UT
Xs(1) = -0.169709
Ys(1) = +0.919710
Zs(1) = +0.398865
RA(1) = 19.46730000 hours
DEC(1) = -13.86869444 degrees
t(2) = JD 2427283.391181 = 29 July 1933, 21h 23m 18s UT
Xs(2) = -0.600429
Ys(2) = +0.751016
Zs(2) = +0.325697
RA(2) = 19.06218056 hours
DEC(2) = -14.11902778 degrees
t(3) = JD 2427312.342083 = 27 August 1933, 20h 12m 36s UT
Xs(3) = -0.908371
Ys(3) = +0.405220
Zs(3) = +0.175716
RA(3) = 18.98696667 hours
DEC(3) = -15.24394444 degrees
Unit vectors from observer to planet.
a(1) = +0.363835156
b(1) = -0.900093900
c(1) = -0.239697622
a(2) = +0.266215600
b(2) = -0.932536300
c(2) = -0.243937090
a(3) = +0.246531192
b(3) = -0.932786462
c(3) = -0.262929245
First Approximation.
tau(1) = 0.498016281
tau(2) = 0.978484047
tau(3) = 0.480467766
nc(1) = 0.508967195
nc(3) = 0.491032805
nu(1) = 0.060177805
nu(3) = 0.059462580
d(1) = 0.015443444
d(2) = 0.018648221
d(3) = 0.017700437
D = 0.001964676
Re(1) = 1.016740339
Re(2) = 1.015193850
Re(3) = 1.010058035
q(1) = 1.970356907
q(2) = 1.879285653
q(3) = 1.296252781
K0 = 1.067106795
L0 = 1.008749516
The Lagrange equation is
f(r2) = r(2)^8 - 4.174733956 r(2)^6 + 4.048615418 r(2)^3 - 1.017575585
The first derivative of the Lagrange equation is
f'(r2) = 8 r(2)^7 - 25.048403737 r(2)^5 + 12.145846255 r(2)^2
This actually takes a while to converge with Newton's method, so I'd consider going to Danby's method for faster convergence. Anyway, it converges to
r(2) = 1.898670742
p(2) = 0.919728216
n(1) = 0.517759189
n(3) = 0.499720304
Q1 = +0.303475173
Q2 = -0.930010982
Q3 = -0.255727953
Q4 = +0.139086706
Q5 = +0.476529097
Q6 = -0.322891519
Q7 = -0.152567065
p(1) = 0.884503909
p(3) = 1.110851828
r(1) = 1.886503769
r(3) = 1.922018156
Correction for planetary abberation.
tc(1) = JD 2427255.455309
tc(2) = JD 2427283.385869
tc(3) = JD 2427312.335667
tau(1) = 0.497997293
tau(2) = 0.978461559
tau(3) = 0.480464267
nc(1) = 0.508959486
nc(3) = 0.491040514
Second Approximation.
x(1) = +0.491522618
y(1) = -1.715846574
z(1) = -0.610878483
x(2) = +0.845274999
y(2) = -1.608695948
z(2) = -0.550052825
x(3) = +1.182230625
y(3) = -1.441407547
z(3) = -0.467791433
K(1) = 3.801232986
K(2) = 3.732555561
K(3) = 3.766593197
h(1) = 0.005401695
h(2) = 0.021826229
h(3) = 0.005168609
Yippy(1) = 1.005962773
Yippy(2) = 1.023636797
Yippy(3) = 1.005707071
nu(1) = 0.061204833
nu(3) = 0.059919537
n(1) = 0.517901529
n(3) = 0.499794774
K0 = 1.067097940
L0 = 1.020939404
The Lagrange equation is
f(r2) = r(2)^8 - 4.174698414 r(2)^6 + 4.097521445 r(2)^3 - 1.042317267
The first derivative of the Lagrange equation is
f'(r2) = 8 r(2)^7 - 25.048190484 r(2)^5 + 12.292564335 r(2)^2
Newton's method converges to...
r(2) = 1.896390493
p(2) = 0.917399712
[Skipping the Q's.]
p(1) = 0.882742391
p(3) = 1.107232428
r(1) = 1.884757972
r(3) = 1.918706335
Higher Approximations.
You've seen how it works. You just keep taking p(i) from the end of the latest approximation and plugging it back into the top of the next approximation and repeating the math with the improved numbers. You keep repeating the recursive section until all the values for r(i) have converged.
Jerry Abbott
Initial Data.
For i=1 to 3
The time of observation: t(i)
The position of the sun: Xs(i), Ys(i), Zs(i)
The unit vector in the direction of the planet: a(i), b(i), c(i)
The position vectors are in local celestial coordinates.
Handy Constants.
k = 0.01720209895 (mean motion of Earth, radians per day)
A = 0.00577551833 (days required for light to travel 1 AU)
First Approximation.
tau(1) = k {t(3)-t(2)}
tau(2) = k {t(3)-t(1)}
tau(3) = k {t(2)-t(1)}
nc(1) = tau(1)/tau(2)
nc(3) = tau(3)/tau(2)
nu(1) = tau(1) tau(3) {1 + nc(1)} / 6
nu(3) = tau(1) tau(3) {1 + nc(3)} / 6
D = a(2) { b(3) c(1) - b(1) c(3) } + b(2) { c(3) a(1) - c(1) a(3) } + c(2) { a(3) b(1) - a(1) b(3) }
For i=1 to 3
d(i) = Xs(i) { c(1) b(3) - c(3) b(1) } + Ys(i) { a(1) c(3) - a(3) c(1) } + Zs(i) { b(1) a(3) - b(3) a(1) }
For i=1 to 3
Re(i) = { Xs(i)^2 + Ys(i)^2 + Zs(i)^2 }^0.5
For i=1 to 3
q(i) = -2 { a(i) Xs(i) + b(i) Ys(i) + c(i) Zs(i) }
K0 = { d(2) - d(1) nc(1) - d(3) nc(3) } / D
L0 = { d(1) nu(1) + d(3) nu(3) } / D
Let r(2) be the distance from the sun to the planet at time 2
Let p(2) be the distance from Earth to the planet at time 2.
We must solve these two equations simultaneously for r(2) and p(2):
p(2) = K0 - L0 / r(2)^3
r(2) = { Re(2)^2 + q(2) p(2) + p(2)^2 }^0.5
This leads to an 8th degree polynomial in r(2):
f{r(2)} = r(2)^8 - { Re(2)^2 + q(2) K0 + K0^2 } r(2)^6 + L0 {q(2) + 2 K0} r(2)^3 - L0^2
f{r(2)} = 0
We will use Newton's method to get the answer.
df/dr(2) = 8 r(2)^7 - 6 { Re(2)^2 + q(2) K0 + K0^2 } r(2)^5 + 3 L0 {q(2) + 2 K0} r(2)^2
As an initial guess at r(2)...
r2(j=0) = 1.0
Then...
Repeat over j
r2(j+1) = r2(j) - f{r2(j)} / df/dr2(j)
Until abs{ r2(j+1) - r2(j) } < 1.0E-12
Assign to r(2) the converged value from the loop:
r(2) = r2(j+1)
p(2) = K0 - L0 / r(2)^3
n(1) = nc(1) + nu(1) / r(2)^3
n(3) = nc(3) + nu(3) / r(2)^3
Q1 = n(1) Xs(1) - Xs(2) + n(3) Xs(3) + a(2) p(2)
Q2 = n(1) Ys(1) - Ys(2) + n(3) Ys(3) + b(2) p(2)
Q3 = n(1) Zs(1) - Zs(2) + n(3) Zs(3) + c(2) p(2)
Q4 = a(1) - a(3) c(1) / c(3)
Q5 = b(1) - b(3) a(1) / a(3)
Q6 = b(3) - b(1) a(3) / a(1)
Q7 = a(3) - a(1) c(3) / c(1)
p(1) = { [ Q1 - a(3) Q3 / c(3) ] / [ n(1) Q4 ] + [ Q2 - b(3) Q1 / a(3) ] / [n(1) Q5] } / 2
p(3) = { [ Q2 - b(1) Q1 / a(1) ] / [ n(3) Q6 ] + [ Q1 - a(1) Q3 / c(1) ] / [n(3) Q7] } / 2
r(1) = { Re(1)^2 + q(1) p(1) + p(1)^2 }^0.5
r(3) = { Re(3)^2 + q(3) p(3) + p(3)^2 }^0.5
Correction for Planetary Abberation.
Light doesn't travel instantaneously. We must correct the initial times for the amount of time it took light to travel from the planet to our eyes. This is done only once, after the first approximation, but before the 2nd approximation. It will not be done between any other successive approximations.
For i=1 to 3
tc(i) = t(i) - A p(i)
Where A is the time (in days) required for light to travel 1 astronomical unit.
tau(1) = k {tc(3)-tc(2)}
tau(2) = k {tc(3)-tc(1)}
tau(3) = k {tc(2)-tc(1)}
nc(1) = tau(1)/tau(2)
nc(3) = tau(3)/tau(2)
Recursive Procedure for Successive Approximations.
For i=1 to 3
x(i) = a(i) p(i) - Xs(i)
y(i) = b(i) p(i) - Ys(i)
z(i) = c(i) p(i) - Zs(i)
K(1) = { 2 [ r(2) r(3) + x(2) x(3) + y(2) y(3) + z(2) z(3) ] }^0.5
K(2) = { 2 [ r(1) r(3) + x(1) x(3) + y(1) y(3) + z(1) z(3) ] }^0.5
K(3) = { 2 [ r(1) r(2) + x(1) x(2) + y(1) y(2) + z(1) z(2) ] }^0.5
h(1) = tau(1)^2 / { K(1)^2 [ K(1)/3 + ( r(2)+r(3) )/2 ] }
h(2) = tau(2)^2 / { K(2)^2 [ K(2)/3 + ( r(1)+r(3) )/2 ] }
h(3) = tau(3)^2 / { K(3)^2 [ K(3)/3 + ( r(1)+r(2) )/2 ] }
For i=1 to 3
Begin
Queasy1 = (11/9) h(i)
Queasy2 = Queasy1
Repeat
Queasy3 = Queasy2
Queasy2 = Queasy1 / ( 1 + Queasy2)
Until abs( Queasy2 - Queasy3 ) / Queasy3 < 1E-12;
Yippy(i) = 1 + (10/11) Queasy2
End
n(1) = nc(1) yippy(2) / yippy(1)
n(3) = nc(3) yippy(2) / yippy(3)
nu(1) = nc(1) r(2)^3 { yippy(2) / yippy(1) - 1 }
nu(3) = nc(3) r(2)^3 { yippy(2) / yippy(3) - 1 }
K0 = { d(2) - d(1) nc(1) - d(3) nc(3) } / D
L0 = { d(1) nu(1) + d(3) nu(3) } / D
p(2) = K0 - L0 / r(2)^3
r(2) = { Re(2)^2 + q(2) p(2) + p(2)^2 }^0.5
f{r(2)} = r(2)^8 - { Re(2)^2 + q(2) K0 + K0^2 } r(2)^6 + L0 {q(2) + 2 K0} r(2)^3 - L0^2
f{r(2)} = 0
df/dr(2) = 8 r(2)^7 - 6 { Re(2)^2 + q(2) K0 + K0^2 } r(2)^5 + 3 L0 {q(2) + 2 K0} r(2)^2
The customary initial guess at r(2)...
r2(j=0) = 1.0
Repeat over j
r2(j+1) = r2(j) - f{r2(j)} / df/dr2(j)
Until abs{ r2(j+1) - r2(j) } < 1.0E-12
Assign to r(2) the converged value from the loop:
r(2) = r2(j+1)
p(2) = K0 - L0 / r(2)^3
Q1 = n(1) Xs(1) - Xs(2) + n(3) Xs(3) + a(2) p(2)
Q2 = n(1) Ys(1) - Ys(2) + n(3) Ys(3) + b(2) p(2)
Q3 = n(1) Zs(1) - Zs(2) + n(3) Zs(3) + c(2) p(2)
Q4 = a(1) - a(3) c(1) / c(3)
Q5 = b(1) - b(3) a(1) / a(3)
Q6 = b(3) - b(1) a(3) / a(1)
Q7 = a(3) - a(1) c(3) / c(1)
p(1) = { [ Q1 - a(3) Q3 / c(3) ] / [ n(1) Q4 ] + [ Q2 - b(3) Q1 / a(3) ] / [n(1) Q5] } / 2
p(3) = { [ Q2 - b(1) Q1 / a(1) ] / [ n(3) Q6 ] + [ Q1 - a(1) Q3 / c(1) ] / [n(3) Q7] } / 2
r(1) = { Re(1)^2 + q(1) p(1) + p(1)^2 }^0.5
r(3) = { Re(3)^2 + q(3) p(3) + p(3)^2 }^0.5
Repeat this whole section (Recursive Procedure for Successive Approximations) until your values for r(i) converge.
MORE ORBIT DETERMINATION IN POSTS TO FOLLOW.
Example (after Dubyago with improved accuracy).
Initial data. In practice, what you determine observationally about a planet's position is right ascension and declination. So I'll present those as initial data and calculate a(i), b(i), c(i) from them. Remember that Xs,Ys,Zs is the position of the sun, while RA and DEC pertain to the planet whose orbit we're trying to determine. (By the way, the planet is asteroid 1590 Tsiolkovskaja, also known as 1933 NA.)
t(1) = JD 2427255.460417 = 1 July 1933, 23h 3m 0s UT
Xs(1) = -0.169709
Ys(1) = +0.919710
Zs(1) = +0.398865
RA(1) = 19.46730000 hours
DEC(1) = -13.86869444 degrees
t(2) = JD 2427283.391181 = 29 July 1933, 21h 23m 18s UT
Xs(2) = -0.600429
Ys(2) = +0.751016
Zs(2) = +0.325697
RA(2) = 19.06218056 hours
DEC(2) = -14.11902778 degrees
t(3) = JD 2427312.342083 = 27 August 1933, 20h 12m 36s UT
Xs(3) = -0.908371
Ys(3) = +0.405220
Zs(3) = +0.175716
RA(3) = 18.98696667 hours
DEC(3) = -15.24394444 degrees
Unit vectors from observer to planet.
a(1) = +0.363835156
b(1) = -0.900093900
c(1) = -0.239697622
a(2) = +0.266215600
b(2) = -0.932536300
c(2) = -0.243937090
a(3) = +0.246531192
b(3) = -0.932786462
c(3) = -0.262929245
First Approximation.
tau(1) = 0.498016281
tau(2) = 0.978484047
tau(3) = 0.480467766
nc(1) = 0.508967195
nc(3) = 0.491032805
nu(1) = 0.060177805
nu(3) = 0.059462580
d(1) = 0.015443444
d(2) = 0.018648221
d(3) = 0.017700437
D = 0.001964676
Re(1) = 1.016740339
Re(2) = 1.015193850
Re(3) = 1.010058035
q(1) = 1.970356907
q(2) = 1.879285653
q(3) = 1.296252781
K0 = 1.067106795
L0 = 1.008749516
The Lagrange equation is
f(r2) = r(2)^8 - 4.174733956 r(2)^6 + 4.048615418 r(2)^3 - 1.017575585
The first derivative of the Lagrange equation is
f'(r2) = 8 r(2)^7 - 25.048403737 r(2)^5 + 12.145846255 r(2)^2
This actually takes a while to converge with Newton's method, so I'd consider going to Danby's method for faster convergence. Anyway, it converges to
r(2) = 1.898670742
p(2) = 0.919728216
n(1) = 0.517759189
n(3) = 0.499720304
Q1 = +0.303475173
Q2 = -0.930010982
Q3 = -0.255727953
Q4 = +0.139086706
Q5 = +0.476529097
Q6 = -0.322891519
Q7 = -0.152567065
p(1) = 0.884503909
p(3) = 1.110851828
r(1) = 1.886503769
r(3) = 1.922018156
Correction for planetary abberation.
tc(1) = JD 2427255.455309
tc(2) = JD 2427283.385869
tc(3) = JD 2427312.335667
tau(1) = 0.497997293
tau(2) = 0.978461559
tau(3) = 0.480464267
nc(1) = 0.508959486
nc(3) = 0.491040514
Second Approximation.
x(1) = +0.491522618
y(1) = -1.715846574
z(1) = -0.610878483
x(2) = +0.845274999
y(2) = -1.608695948
z(2) = -0.550052825
x(3) = +1.182230625
y(3) = -1.441407547
z(3) = -0.467791433
K(1) = 3.801232986
K(2) = 3.732555561
K(3) = 3.766593197
h(1) = 0.005401695
h(2) = 0.021826229
h(3) = 0.005168609
Yippy(1) = 1.005962773
Yippy(2) = 1.023636797
Yippy(3) = 1.005707071
nu(1) = 0.061204833
nu(3) = 0.059919537
n(1) = 0.517901529
n(3) = 0.499794774
K0 = 1.067097940
L0 = 1.020939404
The Lagrange equation is
f(r2) = r(2)^8 - 4.174698414 r(2)^6 + 4.097521445 r(2)^3 - 1.042317267
The first derivative of the Lagrange equation is
f'(r2) = 8 r(2)^7 - 25.048190484 r(2)^5 + 12.292564335 r(2)^2
Newton's method converges to...
r(2) = 1.896390493
p(2) = 0.917399712
[Skipping the Q's.]
p(1) = 0.882742391
p(3) = 1.107232428
r(1) = 1.884757972
r(3) = 1.918706335
Higher Approximations.
You've seen how it works. You just keep taking p(i) from the end of the latest approximation and plugging it back into the top of the next approximation and repeating the math with the improved numbers. You keep repeating the recursive section until all the values for r(i) have converged.
Jerry Abbott
Last edited: