- #1
Gregg
- 459
- 0
If a mass takes a path down a slope of a parabola. The force downward is its weight. I need to resolve the perpendicular and parallel (to direction of motion) forces.
y=ax^2+bx+c, it has a y intercept of h and a repeated root l. a>0. The mass slides from x=0 to x=l with no friction.
[itex] d\vec{r} = \left(
\begin{array}{c}
1 \\
2ax+b
\end{array}
\right)\text{dx} [/itex]
A unit vector in this direction:
[itex] \hat{u} = \frac{1}{\sqrt{1+(2ax+b)^2}}\left(
\begin{array}{c}
1 \\
2ax+b
\end{array}
\right) [/itex]
To get the size of the component of the force parallel to the curve:
[itex] mg \cos (\theta) = mg\frac{(2ax+b)}{\sqrt{1+(2ax+b)^2}} [/itex]
[itex] mg \cos (\theta) \hat{u} = mg\frac{(2ax+b)}{\sqrt{1+(2ax+b)^2}} \frac{1}{\sqrt{1+(2ax+b)^2}}\left(
\begin{array}{c}
1 \\
2ax+b
\end{array}
\right) = mg \frac{(2ax+b)}{1+(2ax+b)^2}\left(
\begin{array}{c}
1 \\
2ax+b
\end{array}
\right) [/itex]
I don't think this is right
y=ax^2+bx+c, it has a y intercept of h and a repeated root l. a>0. The mass slides from x=0 to x=l with no friction.
[itex] d\vec{r} = \left(
\begin{array}{c}
1 \\
2ax+b
\end{array}
\right)\text{dx} [/itex]
A unit vector in this direction:
[itex] \hat{u} = \frac{1}{\sqrt{1+(2ax+b)^2}}\left(
\begin{array}{c}
1 \\
2ax+b
\end{array}
\right) [/itex]
To get the size of the component of the force parallel to the curve:
[itex] mg \cos (\theta) = mg\frac{(2ax+b)}{\sqrt{1+(2ax+b)^2}} [/itex]
[itex] mg \cos (\theta) \hat{u} = mg\frac{(2ax+b)}{\sqrt{1+(2ax+b)^2}} \frac{1}{\sqrt{1+(2ax+b)^2}}\left(
\begin{array}{c}
1 \\
2ax+b
\end{array}
\right) = mg \frac{(2ax+b)}{1+(2ax+b)^2}\left(
\begin{array}{c}
1 \\
2ax+b
\end{array}
\right) [/itex]
I don't think this is right