- #1
spaghetti3451
- 1,344
- 34
Homework Statement
A parameterized ##p##-subset ##(U,F)## of a manifold ##M^{n}## is ''irregular'' at ##u_0## if rank ##F<p## at ##u_0##.
Show that if ##\alpha^{p}## is a form at such a ##u_0## then ##F^{*}\alpha^{p}=0##.
Homework Equations
The Attempt at a Solution
A parameterized ##p##-subset of a manifold ##M^{n}## is a pair ##(U,F)## consisting of a region ##U## in ##\mathbb{R}^{p}## and a differentiable map ##F:U(u)\rightarrow M^{n}(x)##.
If ##\alpha^{p}## is a form at a ##u_0## where rank ##F<p##, then
##\displaystyle{F^{*}\alpha^{p}=(F^{*}\alpha^{p})\bigg[\frac{{\bf{\partial}}}{{\bf{\partial}} u^{i_{1}}}, \dots , \frac{{\bf{\partial}}}{{\bf{\partial}} u^{i_{p}}}\bigg]du^{i_{1}}\wedge \dots \wedge du^{i_{p}}}##
##\displaystyle{F^{*}\alpha^{p}=\alpha^{p}\bigg[F_{*}\frac{{\bf{\partial}}}{{\bf{\partial}} u^{i_{1}}}, \dots , F_{*}\frac{{\bf{\partial}}}{{\bf{\partial}} u^{i_{p}}}\bigg]du^{i_{1}}\wedge \dots \wedge du^{i_{p}}}##
##\displaystyle{F^{*}\alpha^{p}=\alpha^{p}\bigg[\frac{\partial y^{j_{1}}}{\partial u^{i_{1}}}\frac{{\bf{\partial}}}{{\bf{\partial}} y^{j_{p}}}, \dots , \frac{\partial y^{j_{p}}}{\partial u^{i_{p}}}\frac{{\bf{\partial}}}{{\bf{\partial}} y^{j_{p}}}\bigg]du^{i_{1}}\wedge \dots \wedge du^{i_{p}}}##
##\displaystyle{F^{*}\alpha^{p}=\alpha_{j_{1}\dots j_{p}}\frac{\partial y^{j_{1}}}{\partial u^{i_{1}}} \dots \frac{\partial y^{j_{p}}}{\partial u^{i_{p}}}du^{i_{1}}\wedge \dots \wedge du^{i_{p}}}##
Next, I need to use the fact that the matrix of partial derivatives has rank less than ##p##. Can you suggest a trick to show that ##F^{*}\alpha^{p}## is ##0##?
Last edited: