- #1
Bill Foster
- 338
- 0
Homework Statement
I'm looking for [tex]\frac{\partial{P}}{\partial{V}}[/tex] at fixed T and fixed S.
Homework Equations
[tex]P=\frac{TS}{4V}[/tex]
The Attempt at a Solution
[tex]\frac{dP}{dV}=\frac{\partial{P}}{\partial{V}}+\frac{\partial{P}}{\partial{T}}\frac{dT}{dV}+\frac{\partial{P}}{\partial{S}}\frac{dS}{dV}[/tex]
[tex]\frac{\partial{P}}{\partial{V}}=-\frac{TS}{4V^2}[/tex]
[tex]\frac{\partial{P}}{\partial{T}}=\frac{S}{4V}[/tex]
[tex]\frac{\partial{P}}{\partial{S}}=\frac{T}{4V}[/tex]
[tex]\frac{dP}{dV}=\frac{\partial{P}}{\partial{V}}+\frac{\partial{P}}{\partial{T}}\frac{dT}{dV}+\frac{\partial{P}}{\partial{S}}\frac{dS}{dV}=-\frac{TS}{4V^2}+\frac{S}{4V}\frac{dT}{dV}+\frac{T}{4V}\frac{dS}{dV}[/tex]
At constant T, I get this: [tex]\frac{dP}{dV}=-\frac{TS}{4V^2}+\frac{T}{4V}\frac{dS}{dV}[/tex]
At constant S, I get this: [tex]\frac{dP}{dV}=-\frac{TS}{4V^2}+\frac{S}{4V}\frac{dT}{dV}[/tex]
What do I do about the other differentials: [tex]\frac{dS}{dV}[/tex] and [tex]\frac{dT}{dV}[/tex]?
Wouldn't this also be true?
[tex]\frac{dS}{dV}=\frac{\partial{S}}{\partial{V}}+\frac{\partial{S}}{\partial{T}}\frac{dT}{dV}+\frac{\partial{S}}{\partial{P}}\frac{dP}{dV}[/tex]
[tex]\frac{dT}{dV}=\frac{\partial{T}}{\partial{V}}+\frac{\partial{T}}{\partial{S}}\frac{dS}{dV}+\frac{\partial{T}}{\partial{P}}\frac{dP}{dV}[/tex]