Partition function related to number of microstates

AI Thread Summary
The discussion centers on the relationship between the partition function and the number of microstates in statistical mechanics. The partition function, defined as Z = ∑i e^(-βεi), is linked to the Helmholtz free energy and the Shannon entropy, leading to the conclusion that Z is related to the number of microstates (Ω) by the equation Ω = Ze^(βU). However, it is clarified that Boltzmann's entropy formula applies only to microcanonical ensembles, while the partition function pertains to canonical ensembles where microstates are not equally likely. The confusion arises from mixing the entropies of the system and its environment, with the correct interpretation showing that the total number of configurations can be expressed as a product of the microstates of the environment and the partition function. The final result suggests that the relationship Ω_env = Ω(E)e^(-βU) is valid, although it is noted that this specific result is not commonly encountered.
Troy124
Messages
3
Reaction score
0
Hi,

I have a question about the partition function.

It is defined as ## Z = \sum_{i} e^{-\beta \epsilon_{i}} ## where ##\epsilon_i## denotes the amount of energy transferred from the large system to the small system. By using the formula for the Shannon-entropy ##S = - k \sum_i P_i \log P_i## (with ##k## a random constant or ##k_B## in this case), I end up with the following: $$ S = - k \sum_i P_i \log P_i = (k \sum_i P_i \beta \epsilon_i) + (k \sum_i P_i \log Z) = \frac{U}{T} + k \log Z $$

This simplifies to ##Z = e^{-\beta F}## by using the Helmholtz free energy defined as ##F = U - T S##. But Boltzmann's formula for entropy states ##S = k \log \Omega##, where ##\Omega## denotes the number of possible microstate for a given macrostate. So we will get $$ \Omega = e^{S/k} = e^{\beta (U - F)} = Z e^{\beta U} $$

So the partition function is related to the number of microstates, but multiplied by a factor ##e^{\beta U}##. And this bring me to my question: why is it multiplied by that factor? Maybe the answer is quite simple, but I can't seem to think of anything.
 
Physics news on Phys.org
Troy124 said:
Hi,

I have a question about the partition function.

It is defined as ## Z = \sum_{i} e^{-\beta \epsilon_{i}} ## where ##\epsilon_i## denotes the amount of energy transferred from the large system to the small system. By using the formula for the Shannon-entropy ##S = - k \sum_i P_i \log P_i## (with ##k## a random constant or ##k_B## in this case), I end up with the following: $$ S = - k \sum_i P_i \log P_i = (k \sum_i P_i \beta \epsilon_i) + (k \sum_i P_i \log Z) = \frac{U}{T} + k \log Z $$

This simplifies to ##Z = e^{-\beta F}## by using the Helmholtz free energy defined as ##F = U - T S##. But Boltzmann's formula for entropy states ##S = k \log \Omega##, where ##\Omega## denotes the number of possible microstate for a given macrostate. So we will get $$ \Omega = e^{S/k} = e^{\beta (U - F)} = Z e^{\beta U} $$

So the partition function is related to the number of microstates, but multiplied by a factor ##e^{\beta U}##. And this bring me to my question: why is it multiplied by that factor? Maybe the answer is quite simple, but I can't seem to think of anything.

Boltzmann's formula ##S = k_B \ln \Omega## is applicable only to the case of a microcanonical ensemble - a system in which every microstate is equally likely. Note that setting ##P_i = 1/\Omega## in ##S = -k_B \sum_{i=1}^\Omega P_i \ln P_i## gives Boltzmann's formula.

The partition function ##Z = \sum_i \exp(-\beta \epsilon_i)## corresponds to a canonical ensemble. The microstates in a canonical ensemble are not equally likely, so Boltzmann's formula ##S = k_B \ln \Omega## does not apply. (However, the more general formula, ##S = -k_B \sum_{i=1}^\Omega P_i \ln P_i##, does still apply).

You can thus not equate ##\Omega## to ##Ze^{\beta U}##, as the two formulas you used for entropy are not simultaneously true.
 
Hi,

Thanks for your reply. I finally figured out that I mixed up the entropy of the environment with the entropy of the system, because my idea was that the total system, so environment + system, could be described by the microcanonical ensemble and I could use Boltzmann's formula, but then you will end up with something different:

The system including its environment can be described as a microcanonical ensemble. The number of possible configurations for this ensemble are ##\Omega_{total} = \sum_i w_i## where ##w_i## denotes the number of possible configurations given an ##\epsilon_i##.

We know $$w_i = \Omega (E-\epsilon_i) \Omega (\epsilon_i)$$ (with ##\Omega (\epsilon_i) = 1##, ##\Omega (E-\epsilon_i)## the number of microstates of the system when its energy equals ##E-\epsilon_i## and ##\Omega (E)## the number of microstates of the environment, when it is not thermally connected to another system) and thus $$ \Omega_{total} = e^{S_{total}/k} = e^{S/k} e^{S_{env}/k} = e^{\beta (U - F)} \Omega_{env} = \sum_i \Omega (E - \epsilon_i) = \Omega (E) \sum_i e^{-\beta \epsilon_i} = \Omega (E) e^{-\beta F}$$

This simplifies to $$ \Omega_{env} = \Omega (E) e^{-\beta U}$$

Do you know if this is correct, because I have never seen this result before. It does seem okay to me though.
 
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top