I PDEs greater than order 2 with real world applications?

BWV
Messages
1,583
Reaction score
1,936
Came across this today, a fourth order PDE - the Kuramoto–Sivashinsky equation, apparently used to model flames

1634249292980.png
https://en.wikipedia.org/wiki/Kuramoto–Sivashinsky_equation

Any other examples of high order PDEs with actual applications?

amoto%E2%80%93Sivashinsky_spatiotemporal_evolution.png
 
Physics news on Phys.org
Another example is one dimensional transverse waves on a uniform slender beam, which satisfy ## u_{xxxx} + a^2 \, u_{tt} = 0 ##. This is a special case of the Euler-Bernoulli equation
https://en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Back
Top