Pendulum Question Homework: Resolving Tension Components

  • Thread starter Thread starter Aninda
  • Start date Start date
  • Tags Tags
    Pendulum
AI Thread Summary
The discussion focuses on a pendulum's tension in different acceleration scenarios within a moving cage. The tension equations derived from Free Body Diagrams (FBD) for upward and downward acceleration are T1 = m(g+a) and T2 = m(g-a). The main confusion arises in analyzing the tension when the cage accelerates horizontally, with participants noting discrepancies between their findings and textbook equations. It is suggested to clarify the FBD by considering all forces acting on the pendulum and using a coordinate system to resolve tension components correctly. The conversation emphasizes understanding the relationship between tension, gravitational force, and acceleration in different orientations.
Aninda
Messages
1
Reaction score
0

Homework Statement


A pendulum is hanging from the ceiling of a cage. If the cage moves up with constant acceleration a, its tension is T1. If it moves down with the same acceleration a then the tension is T2. If the cage moves horizontally with the same acceleration a, then the tension is T. Now, 2T2 =
(a) T12 + T22
(b) T12 - T22
(c) 2T12 - T22
(d) T12 - 2T22

Homework Equations


F = ma

The Attempt at a Solution


I found the tension in the string for the above two cases from their respective Free Body Diagrams
i.e T1 = m(g+a) and T2 = m(g-a)
But I had some problems for the Free Body Diagram of the pendulum in the third case, i.e when the cage is accelerating sideways.
Here is my FBD
fr8Nmdd.jpg

So from the FBD I get
T = mg cos θ ---(i) and tan θ = (a/g) ---(ii)
My confusion is that is the equation (i) correct ?
Since the equations in the book is given in the book is written differently
Instead of resolving the weight components they resolved the tension components i.e the equations are given as
T sin θ = ma --- (iii)
T cos θ = mg ---(iv)
As you can see both the equations (i) and (iv) looks different. I could not figure out where is the mistake
 
Physics news on Phys.org
There are three forces acting on the pendulum. You are confusing yourself by introducing the components only of the gravitational force. Start by drawing the FBD without a coordinate system, then introduce a coordinate system and write down the force equations in all directions.
 
  • Like
Likes Aninda
Alternatively, you can just use the fact that the net force needs to be zero and that a and g are orthogonal ... Then you never need to introduce a coordinate system or care about the components.
 
  • Like
Likes Aninda
There's no mistake, he just broke down the tension in x and y-direction. Try to draw a graph with two axes (x, y) and draw on it the decomposed tension in x and y-direction, the cage force (ma) and the weight force (mg), and you will see what the book did. I hope that someone more qualified helps you, but for now, think about it.
(Sorry, the message came too late, someone has already answered the question)
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top