Perturbation Theory: Finding Eigenfunctions and Energies

AI Thread Summary
The discussion centers on the application of perturbation theory to a Hamiltonian with an added perturbation term. The new eigenfunction is expressed as ψ = exp(-i x λ/ħ) φ_n, indicating that it is a phase-modified version of the original eigenfunction φ_n. This form arises due to the mathematical treatment of the momentum operator p, which has been shifted by the perturbation λ. Participants note that the phase factor reflects the nature of the perturbation and its impact on the eigenfunction. The discussion emphasizes the connection between the perturbation and the resulting change in the eigenfunction's form.
PeteSampras
Messages
43
Reaction score
2
In a text a exercice says that for the Hamiltonian

##H_0 = \frac{p^2}{2m}+V(x)## the eigenfunction and eigen energy are ##\phi_n, E_n##. If we add the perturbation ## \frac{\lambda}{m}p## ¿what is the new eigenfunction?

The solution is

## \frac{p^2}{2m} + \frac{\lambda}{m}p+V= \frac{(p+\lambda)^2}{2m}- \frac{\lambda^2}{2m}+V##

but, the solution says ##\psi= exp(-i x \lambda/ \hbar) \phi_n##

I understand that ##H_0 \phi_n = E \phi_n## but,

¿why the solution ##\psi## has it form?,
 
Physics news on Phys.org
Welcome to PF;

why [does] the solution, ψ, ha[ve] [that] form?
Perhaps because that is how the maths comes out?
Did you go through the calculation? Did you come up with anything else?
 
The form of the new psai is a phase factor mutiplied by the previous eigenfunction. You can to some extent anticipate this answer form because the moment p has undergone a certain 'shift' by lamda.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top