Peskin - exponention of disconnected diagrams

  • Thread starter Thread starter PJK
  • Start date Start date
  • Tags Tags
    Diagrams Peskin
PJK
Messages
14
Reaction score
0
Hi all,

I have a question regarding p.97 of Peskin Schroeder and its explantion of disconnected diagram exponentation. I do understand the formula on the buttom of page 96. \prod{\frac{1}{n_i!}V_{i}^{n_i}} \cdot (value \; of\; connected \; piece)

ButI do not understand the sum over \{ n_i \} in the next step!
I would think that I have to sum over the values of all diagrams. Each value is given by the formula which I understand. But why are there two sums?
 
Physics news on Phys.org
A complete diagram is specified by (1) the connected piece, and (2) the number n_i of factors of each possible disconnected piece V_i. (The connected piece has the 2 external lines; the disconnected pieces have no external lines.) Summing over all diagrams is implemented by (1) summing over the possible connected pieces, and (2) summing over all possible numbers of factors of the disconnected pieces.
 
Ok I got it. Thank you!
What I find very strange though is that he converts \sum_{n_i} \frac{1}{n_i!}V_i^{n_i} into exp(V_i) - I mean for example n_1 can be an arbitrary number e.g. 999888 and not 1. This doesn't look like an exponential series to me.

Thank you for your answer.
 
Yes, he's summing over all possible values of n_i from 0 to infinity. Then he notes that this simply gives the series for the exponential function,

\sum_{n=0}^\infty{x^n\over n!}=e^x
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Back
Top