- #36
DrChinese
Science Advisor
Gold Member
- 8,195
- 1,930
vanhees71 said:... indeed you describe it right but draw the wrong conclusions: There's a position of detection events, determined by the position of massive detectors. ...
It "right" because I make reference to representative experiments where this description is "useful". Those detectors are measuring arrival times of (bi)photons traveling on precise classical paths once they are corralled. I am not drawing any conclusion past what the experimenters are doing. You should be able to see the irony of asserting photons don't have position (operator), when you can measure that position to a precision limited only by experimental setup and the usual constraints of the Heisenberg Uncertainty Principle. That it is done with a detector is irrelevant. ALL particle detection events EVERYWHERE are brought to us by some detector or film or similar - you can't just deny the obvious position for photons and accept the same evidence for anything else just because it doesn't fit with your theory. The theory is not reality, but it can be a useful representation of reality.
Generally accepted science is: Photons exist, and their future position can be accurately predicted - within obvious constraints of the actual setup. This does not mean that photons are classical particles, they aren't - and I repeatedly say that it is a mistake to think of them in that manner. However, there are certainly many times when a photon exhibits the behavior of a classical particle - and such description can be useful. Certainly it is useful when the experimenter decides where to place the apparatus.