I Physical interpretation of this coherent state

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Given the usual raising & lowering operators ##A^{\dagger}## & ##A## for a quantum harmonic oscillator, consider a coherent state ##|\alpha\rangle \equiv e^{\alpha A^{\dagger} - \bar{\alpha} A} |0\rangle##. I first check that ##|\alpha\rangle## is an eigenvector of ##A##. I already proved that if ##X##, ##Y## commute with ##[X,Y]## then ## e^{X+Y} = e^{X} e^{Y} e^{-\frac{1}{2}[X,Y]}##, which is applicable here because both ##A^{\dagger}## & ##A## clearly commute with ##[A^{\dagger}, A] = 1##, therefore\begin{align*}
|\alpha \rangle &= e^{\alpha A^{\dagger}} e^{-\bar{\alpha} A} e^{-\frac{1}{2}[\alpha A^{\dagger},-\bar{\alpha} A]} |0\rangle = e^{\frac{1}{2}|\alpha|^2} e^{\alpha A^{\dagger}} |0\rangle
\end{align*}where I used that ##e^{-\bar{\alpha} A}|0 \rangle = (1 - \bar{\alpha} A + \dots)|0\rangle = |0 \rangle##. Upon application of ##A##,\begin{align*}
A|\alpha\rangle = e^{\frac{1}{2}|\alpha|^2} (A e^{\alpha A^{\dagger}}) |0 \rangle = e^{\frac{1}{2}|\alpha|^2} ([A , e^{\alpha A^{\dagger}}] + e^{\alpha A^{\dagger}} A) |0 \rangle &= e^{\frac{1}{2}|\alpha|^2} (\alpha e^{\alpha A^{\dagger}} + e^{\alpha A^{\dagger}} A) |0 \rangle \\
&= \alpha e^{\frac{1}{2}|\alpha|^2} e^{\alpha A^{\dagger}} |0\rangle \\
&= \alpha |\alpha \rangle
\end{align*}which means that ##|\alpha \rangle## is of eigenvalue ##\alpha##. I make use of a similar operator identity ##e^X e^Y = e^Y e^X e^{[X,Y]}## to calculate the inner product of two general states:\begin{align*}
\langle \alpha | \beta \rangle = e^{\frac{1}{2} (|\alpha|^2 + |\beta|^2)}\langle 0 | e^{\bar{\beta} A} e^{\alpha A^{\dagger}}| 0 \rangle &= e^{\frac{1}{2} (|\alpha|^2 + |\beta|^2)}\langle 0 | e^{\alpha A^{\dagger}} e^{\bar{\beta} A} e^{[\bar{\beta} A, \alpha A^{\dagger}]} | 0 \rangle \\
&= e^{\frac{1}{2}(|\alpha|^2 + |\beta|^2)}e^{-2\alpha \bar{\beta}} \langle 0 | e^{\alpha A^{\dagger}} e^{\bar{\beta} A} | 0 \rangle \\
&= e^{\frac{1}{2}(|\alpha|^2 -2\alpha \bar{\beta} + |\beta|^2))}
\end{align*}where I used the fact that ##\langle 0 | e^{\alpha A^{\dagger}} \leftrightarrow e^{\bar{\alpha} A} |0\rangle##. It is therefore also the case that ##|\langle \alpha | \beta \rangle|^2 = e^{|\alpha - \beta|^2}##, that the set ##\{ |\alpha \rangle \}_{\alpha \in \mathbf{C}}## spans the space and that one can select a basis from a suitable subset of ##\{ |\alpha \rangle \}_{\alpha \in \mathbf{C}}##.

To consider the physical interpretation of ##|\alpha(t) \rangle## for a general complex ##\alpha \in \mathbf{C}##, it is advised to calculate ##\langle \alpha | P | \alpha \rangle##,\begin{align*}
\langle \alpha | P | \alpha \rangle = \frac{i}{\sqrt{2}} \langle \alpha | (A^{\dagger} - A) | \alpha \rangle &= \frac{i}{\sqrt{2}} \langle \alpha | (\bar{\alpha} - \alpha) |\alpha \rangle \\
&= \frac{i}{\sqrt{2}} (\bar{\alpha} - \alpha) \\
&= \sqrt{2} \mathrm{Im}(\alpha)
\end{align*}How am I supposed to interpret that the mean value of the momentum is proportional to the imaginary part of ##\alpha##? Also, how would I use this result to describe, qualitatively, how the position and momentum space wavefunctions evolve (I already worked out that ##|\alpha(t) \rangle = e^{-i\omega t/2} | e^{-i\omega t} \alpha \rangle##?
 
Last edited:
Physics news on Phys.org
Thanks for the link. Is there a way to see that the position and momentum basis wavefunctions oscillate like in a classical system without further calculation apart from the OP? I only ask because my problem sheet suggests that it is not necessary to work anything else out explicitly.
 
You can refer to Ehrenfest's theorem. Since the harmonic oscillator has a linear set of equations of motion for ##x## and ##p## the expectation values fulfill precisely the same equations of motion as the classical harmonic oscillator. A coherent state is one of minimal uncertainty product, ##\Delta x \Delta p=\hbar/2##, and thus are closest to a classical description of the system, especially for large ##|\alpha|##.
 
  • Like
  • Informative
Likes Demystifier and ergospherical
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...

Similar threads

Back
Top