Pion's mean free path in a lake. exercIse question

AI Thread Summary
A charged pion with a lifetime of 10^-8 seconds and a mean free path of 100 meters is analyzed for its probability of reaching the bottom of a 30-meter deep lake while traveling at 0.9999c. Calculations show that the pion would take approximately 0.14 x 10^-8 seconds to reach the lake's bottom, which is less than its lifetime, suggesting it may not reach the bottom. However, the mean free path indicates that the pion could decay or interact with water nuclei before reaching the bottom. The discussion emphasizes the need to calculate the probabilities of both decay and interaction to determine the pion's fate. Ultimately, both decay and interaction probabilities must be considered to assess whether the pion will reach the lake bed.
tasos
Messages
9
Reaction score
0

Homework Statement


Charged pion with average life time $$\tau=10^{-8} sec$$, and mean free path in the water$$\ell=100m$$ falls prependicular to a lake (depth of lake is at $$\ell_0 =30m$$ with velocity $$V=0.9999c$$

What of the next is correct?

1). The particle isn't gona touch the bottom of the lake
2.)The particle have at least 60% probability to touch the lake
3.)The particle have a probability lower than 40% to touch the bottom of the lake

Homework Equations

The Attempt at a Solution



The first think i did is to calculate the Height of the lake "seen" by the pion
$$L=\ell_ 0 \sqrt{1+\frac{V^2}{c^2} } =0.42m$$

After that i calculate the time needs to touch the bottom of the lake

$$t=\frac{L}{V} =0.14 \times 10^{-8} $$

So if pion's life time is $$\tau=10^-8 sec$$ and it needs $$t=0.14 \times 10^{-8} $$, i say that it not gona touch the bottom of the lake.

BUT the excersice is giving me also the mean free path in the water$$\ell=100m$$
and i don't know how to use it, or if i need to use it.

Any sugestions? Thanx a lot.
 
Physics news on Phys.org
I'm not able to help with particle physics, but ...

just looking at your conclusion, I can't see how you could arrive at it. The particle has a mean lifetime of 10-8 s, and you say it would require just ##\frac 1 7## of this duration to traverse the lake's depth.

How do you conclude it probably won't reach the lake bed?
 
in pion's system from this results we conclude that is going to decay before it reach the bottom. This 1/7 you say its the problem. But given the average free path in the water ,i think i need to calculate some probability.
For example if i had a beam with $$N_0$$ pions, given the average path we no that $$N=N_0 e^{-\frac{t}{\tau}} $$ so we can see how many particles will survive for a given time t.
The same equation is for the path $$N=N_0 e^{-\frac{L}{\ell}}$$
 
tasos said:
in pion's system from this results we conclude that is going to decay before it reach the bottom.
Why? The flight time in the pion system is just 1/7 of its lifetime. Why do you expect all pions to decay so early?

Pions can decay or hit a nucleus in the water, in both cases the pion is not there any more. You'll have to check how likely both cases are to see if the pion makes it to the bottom.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top