MHB Please check Laguerre's eqtn solution

  • Thread starter Thread starter ognik
  • Start date Start date
Click For Summary
The discussion focuses on verifying the solution to Laguerre's equation, specifically identifying the weighting factor w(x) and the integrating factor (IF). The participant confirms that the correct IF is e^{-x}, which leads to the equation being self-adjoint. They inquire about the possibility of multiple integrating factors for a function, emphasizing the need for clarity in their previous integration steps. The conversation highlights the importance of accurate notation and understanding in Sturm-Liouville theory. Overall, the participant seeks validation of their approach and understanding of the concepts involved.
ognik
Messages
626
Reaction score
2
Hi - revising Sturm-Liouville theory and would appreciate someone checking & correcting/improving the following.

Given Laguerre's eqtn $xy''+(1-x)y'+\lambda y = 0 $, which is not self-adjoint, find the weighting factor w(x).

If I didn't know the integrating factor, would one be $ \mu(x) = \frac{1}{x} e^{\int\frac{1-x}{x}dx} = \frac{1}{x}\left( x-e^{x} \right)$? As it is I know $\mu(x) = e^{-x}$ works well.

Then $ e^{-x} xy''+ e^{-x} (1-x)y'+ e^{-x} \lambda y = 0 $ and I verify this is self-adjoint by showing $p'_0$ = $p_1$

Then by comparison with the Sturm-Liouville problem $ \mathcal{L}y + \lambda W(x)y = 0 $, I can write:
$q(x) = 0$
$\lambda$ is the eigenvalue and y(x) is the corresponding eigenfunction
and $w(x) = e^{-x}$

Anything I am missing?
 
Physics news on Phys.org
Hi - the reason I ask questions like this is that over this year some things I thought were right have been - to some degree - wrong or incomplete or just using incorrect notation. So if I have this correct I would really appreciate a short confirmation; but am also interested in my 1st question about the Integration Factor - it would seem there can be more than 1 I/F ?
Thanks.
 
ognik said:
. . . $ \mu(x) = \frac{1}{x} e^{\int\frac{1-x}{x}dx} = \frac{1}{x}\left( x-e^{x} \right)$?
You might want to check what you did after you integrated.
 
Sorry, this was ambiguous. After I integrated I didn't use the IF that I had found, because I had used an IF of $e^{-x}$ in a different Laguerre's eqtn problem and it looked easier to work with than the IF I found by integrating.

I just want to confirm that there can be multiple different IFs for a function - i.e. integrating is just one method to find 1 possibility?

Secondly, using the easier IF of $e^{-x}$, I just wanted to check that I had applied the S-L theory correctly (book doesn't give the answer)

Thanks
 
What I'm saying is that after your integration, your simplifaction is incorrect.

$$\dfrac{e^{\int\frac{1-x}{x}dx}}{x} = \dfrac{e^{ln x - x}}{x} = \dfrac{x e^{-x}}{x} = e^{-x}$$

(I've also be a little relaxed with absolutes).
 
Oops misunderstood, you're of course right. So is there then only 1 IF that will make a function self-adjoint?

And please check that the rest of what I did is correct?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K