MHB Poisson Distribution: Prob of <=3 Wrong Connections in Building

AI Thread Summary
The discussion revolves around calculating the probability of at most 3 wrong connections in a building with two independent telephone exchanges, A and B, modeled as Poisson variables. Exchange A has a parameter of 0.5, while exchange B has a parameter of 1. The user initially attempted to calculate this probability using a specific formula but found the answer to be incorrect. The correct approach involves using the conditional probability formula, specifically P(X+Y≤3|X≥2), which incorporates the probabilities of different combinations of wrong connections. The conversation emphasizes the importance of correctly applying the Poisson distribution in this context.
Punch
Messages
44
Reaction score
0
A building has 2 independent automatc telephone exchanges A and B. The number X of wrong connections for A in anyone day is a poisson variable with parameter 0.5 and the number Y of wrong connections for B in any one day is a poisson variable with parameter 1.

Calculate in any particular day, the probability that there will be at most 3 wrong connections in the building given X≥2

I tried using P(X=2)P(Y=0)+P(X=2)P(Y=1)+P(X=3)P(Y=0) but the answer was wrong
 
Mathematics news on Phys.org
Punch said:
A building has 2 independent automatc telephone exchanges A and B. The number X of wrong connections for A in anyone day is a poisson variable with parameter 0.5 and the number Y of wrong connections for B in any one day is a poisson variable with parameter 1.

Calculate in any particular day, the probability that there will be at most 3 wrong connections in the building given X≥2

I tried using P(X=2)P(Y=0)+P(X=2)P(Y=1)+P(X=3)P(Y=0) but the answer was wrong

\[P(X+Y\le 3|X\ge 2)=\frac{P(X=3)P(Y=0)+P(X=2)P(Y\le 1)}{P(X\ge 2)}\]CB
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top