MHB Polynomial challenge: Show that not all the coefficients of f(x) are integers.

AI Thread Summary
The discussion centers on a degree 10 polynomial $f(x)$ with integer values $p$, $q$, and $r$ such that $f(p)=q$, $f(q)=r$, and $f(r)=p$. Participants analyze the implications of assuming all coefficients of $f(x)$ are integers. A key point raised is a correction regarding divisibility, specifically that $r-p$ should divide $p-q$. The conclusion drawn is that not all coefficients of $f(x)$ can be integers, as demonstrated through the relationships between $p$, $q$, and $r$. The thread emphasizes the complexity of polynomial behavior under integer constraints.
castor28
Gold Member
MHB
Messages
255
Reaction score
0
$f(x)$ is a degree 10 polynomial such that $f(p)=q$, $f(q)=r$, $f(r)=p$, where $p$, $q$, $r$ are integers with $p<q<r$.

Show that not all the coefficients of $f(x)$ are integers.
 
Mathematics news on Phys.org
castor28 said:
$f(x)$ is a degree 10 polynomial such that $f(p)=q$, $f(q)=r$, $f(r)=p$, where $p$, $q$, $r$ are integers with $p<q<r$.

Show that not all the coefficients of $f(x)$ are integers.

Let all coefficients be integers
we have m-n divides $f(m)-f(n)$
so p- q | f(p) - f(q) | q-r

similarly
q -r | r-p
and r-p | p - q

from above as p - q | q-r | r- p | p- q (all nteger multiples) so all are same and hence a contradiction

so all coefficients cannot be integers
 
Last edited:
kaliprasad said:
Let all coefficients be integers
we have m-n divides $f(m)-f(n)$
so p- q | f(p) - f(q) | q-r

similarly
q -r | r-p
and r-q | p - q

from above as p - q | q-r | r- p | p- q (all nteger multiples) so all are same and hence a contradiction

so all coefficients cannot be integers
That is quite correct (except for a small typo: $r-q\mid p-q$ should be $r-p\mid p-q$).
Congratulations!:)
 
castor28 said:
That is quite correct (except for a small typo: $r-q\mid p-q$ should be $r-p\mid p-q$).
Congratulations!:)

Thanks castor. Corrected the same inline for the flow.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top