- #1
lfdahl
Gold Member
MHB
- 749
- 0
Suppose $f$ is a polynomial in $n$ variables, of degree $ \le n − 1$, ($n = 2, 3, 4 ...$ ).Prove the identity:
\[\sum (-1)^{\epsilon_1+\epsilon_2+\epsilon_3+ ...+\epsilon_n}f(\epsilon_1,\epsilon_2,\epsilon_3,...,\epsilon_n) = 0\;\;\;\;\; (1)\]
where $\epsilon_i$ is either $0$ or $1$, and the sum is over all $2^n$ combinations.
Hint: The identity $(1)$ is linear in $f$, so it suffices to prove it for $f$ of the form
$f(x_1, x_2, x_3,..., x_n) = x_1^{p_1}x_2^{p_2}x_3^{p_3}...x_n^{p_n}$, where $p_1+p_2+p_3 + ... + p_n \le n-1$.
\[\sum (-1)^{\epsilon_1+\epsilon_2+\epsilon_3+ ...+\epsilon_n}f(\epsilon_1,\epsilon_2,\epsilon_3,...,\epsilon_n) = 0\;\;\;\;\; (1)\]
where $\epsilon_i$ is either $0$ or $1$, and the sum is over all $2^n$ combinations.
Hint: The identity $(1)$ is linear in $f$, so it suffices to prove it for $f$ of the form
$f(x_1, x_2, x_3,..., x_n) = x_1^{p_1}x_2^{p_2}x_3^{p_3}...x_n^{p_n}$, where $p_1+p_2+p_3 + ... + p_n \le n-1$.