- #1
CGandC
- 326
- 34
- Homework Statement
- Problem: Define language ##L## s.t. a sequence of natural numbers ( zero included ) ##(t,a_1,b_1,k_1, \ldots , a_m ,b_m ,k_m ) ## is in ##L## if and only if the coefficient of ## x^{2t} ## in the expansion of ## p(x)=\left(a_1+b_1 x^{k_1}\right)\left(a_2+b_2 x^{k_2}\right) \cdots\left(a_m+b_m x^{k_m}\right) ## is non-zero. ( in other words, ## p(x)=\sum_{i=0}^d c_i x^i ## for integer coefficients ## d \geq 2 t, c_0, \ldots, c_d ##, and ## c_{2 t} \neq 0 ##).
Prove ## L \in NP ##.
- Relevant Equations
- Every language in NP has polynomial verifier and vice-versa.
Attempt: We'll define a polynomial verifier such that for input ## \left\langle\left(t, a_1, b_1, k_1, \ldots, a_m, b_m, k_m\right), I\right\rangle ## it accepts if and only if ## I ## is an encoding of a set ## I \subseteq \{ 1 , \ldots , m \} ## such that ## \sum_{i \in I} k_i=2 t ## [ I don't know how to continue from here ]
How do I continue the verifier construction? I don't see what conditions ( which involve the coefficients ## b_i , a_i , i\in I## ) one can check on the witness ## I ## in order to create a correct verifier, any ideas?
How do I continue the verifier construction? I don't see what conditions ( which involve the coefficients ## b_i , a_i , i\in I## ) one can check on the witness ## I ## in order to create a correct verifier, any ideas?