I Polynomials can be used to generate a finite string of primes....

AI Thread Summary
The polynomial F(n) = n^2 - n + 41 generates prime numbers for all n less than 41. Participants discussed whether there are polynomials that can generate longer lists of primes, concluding that while some exist, the overall list of such polynomials is finite. Quadratic polynomials can generate primes, but the existence of longer lists remains uncertain. The Green-Tao theorem indicates that for any positive integer k, there is a prime arithmetic progression of length k. The discussion highlighted the complexities of prime generation through polynomials and the implications of established mathematical theorems.
mathman
Science Advisor
Homework Helper
Messages
8,130
Reaction score
574
TL;DR Summary
Polynomials can be used to generate a finite string of primes
F(n)=##n^2 −n+41## generates primes for all n<41.

Questions:
(1) Are there polynomials that have longer lists?

(2) Is such a list of polynomials finite (yes, no, unknown)?

(3) Same questions for quadratic polynomials?
 
Last edited by a moderator:
Mathematics news on Phys.org
(1) Yes.
(2) No.
(3) I don't think so. No for any list, yes, for longer lists.
 
It doesn't even have to be quadratic: the Green-Tao theorem states that for any positive integer ##k##, there exists a prime arithmetic progression of length ##k##. In other words, for any ##k##, there exists a prime ##p## and a positive integer ##n## which generates the sequence ##\{p, p+n, p+2n, \dots p+(k-1)n\}## where all the members of the sequence are prime.
 
  • Like
  • Informative
Likes Janosh89, Wrichik Basu, fresh_42 and 2 others
To expand on @TeethWhitener mention of the Green-Tao Theorem, here is a seminar on the theorem:



Since this thread has run its course, it's time to close it and thank everyone who contributed here.

Jedi
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top