- #1
jmtome2
- 69
- 0
Homework Statement
A sphere of radius 'a' contains a charge Q, uniformly distributed throughout it's volume. Calculate the total potential energy of this configuration.
Homework Equations
[tex]U=\frac{1}{2}\int \rho V d\tau[/tex]
with [tex]\rho[/tex]=charge density
and [tex]V[/tex]=potential
The Attempt at a Solution
Potential of a Charged Sphere is [tex]V=\frac{Q}{4\pi\epsilon_0\cdot r}[/tex]
Uniform Charge Density of a Sphere is [tex]\rho=\frac{Q}{Vol}=\frac{Q}{\frac{4}{3}\pi\cdot a^{3}}[/tex]
Therefore our equation becomes:
[tex]U=\left(\frac{1}{2}\right)\left(\frac{Q}{\frac{4}{3}\pi\cdot a^{3}}\right)\left(\frac{1}{4\pi\epsilon_0}\right) \int \frac{1}{r}d\tau[/tex]
In spherical coordinates, [tex]d\tau=r^2sin(\theta)drd\theta\d\phi[/tex]
[tex]U=\frac{Q^2}{\frac{32}{3}\pi^2\espilon_0\cdot a^3} \int^{a}_{0} rdr \int^{\pi}_{0} sin(\theta) d\theta \int^{2\pi}_{0} d\phi[/tex]
Final: [tex]U=\left(\frac{3}{16}\right)\left(\frac{Q^2}{\pi\epsilon_0\cdot a}\right)[/tex]
Last edited: