jmtome2
- 67
- 0
Homework Statement
A sphere of radius 'a' contains a charge Q, uniformly distributed throughout it's volume. Calculate the total potential energy of this configuration.
Homework Equations
U=\frac{1}{2}\int \rho V d\tau
with \rho=charge density
and V=potential
The Attempt at a Solution
Potential of a Charged Sphere is V=\frac{Q}{4\pi\epsilon_0\cdot r}
Uniform Charge Density of a Sphere is \rho=\frac{Q}{Vol}=\frac{Q}{\frac{4}{3}\pi\cdot a^{3}}
Therefore our equation becomes:
U=\left(\frac{1}{2}\right)\left(\frac{Q}{\frac{4}{3}\pi\cdot a^{3}}\right)\left(\frac{1}{4\pi\epsilon_0}\right) \int \frac{1}{r}d\tau
In spherical coordinates, d\tau=r^2sin(\theta)drd\theta\d\phi
U=\frac{Q^2}{\frac{32}{3}\pi^2\espilon_0\cdot a^3} \int^{a}_{0} rdr \int^{\pi}_{0} sin(\theta) d\theta \int^{2\pi}_{0} d\phi
Final: U=\left(\frac{3}{16}\right)\left(\frac{Q^2}{\pi\epsilon_0\cdot a}\right)
Last edited: