Power Expansion (Complex variables)

tmlfan_17
Messages
11
Reaction score
0

Homework Statement



Use the power series for e^z and the def. of sin(z) to check that
sum ((-1)^k z^(2 k+1))/((2 k+1)!)

Homework Equations





The Attempt at a Solution



I apologize, but I am not particularly good with latex. Therefore, I attached a picture of my solution thus far. I've tried many methods, but this is where I get stuck and I can't seem to get sin(z) to equal its power expansion. Any help would be very much appreciated.
 

Attachments

  • Scan 1.jpg
    Scan 1.jpg
    20.6 KB · Views: 531
Physics news on Phys.org
So you have:
$$\frac{1}{2i}\sum_{n=0}^{\infty} \frac{z^n}{n!}\left(i^n-(-i)^n\right)$$
Clearly, if ##n## is even, ##i^n-(-i)^n=0##. Can you figure out what happens if ##n## is odd i.e ##n## is of the form ##2k+1##?
 
Yes. Thank you sir!
 
tmlfan_17 said:
Yes. Thank you sir!

Glad to help but please don't call me sir, I am a student myself. :smile:
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top