Poynting’s theorem -- Check the relation of the energy balance

  • Thread starter Thread starter Lambda96
  • Start date Start date
  • Tags Tags
    Energy Theorem
AI Thread Summary
The discussion revolves around the application of Poynting's theorem, focusing on the calculations of the Poynting vector and energy density. Participants identify dimensional inconsistencies in the expressions derived, particularly the term ##\varrho^2+c^4t^2##, which is deemed incorrect. The use of Gaussian units is emphasized, with clarifications on the divergence of the vector field and the proper representation of the current density. The conversation highlights the importance of careful algebraic manipulation and understanding the physical significance of the variables involved. Overall, the thread serves as a collaborative effort to resolve calculation issues related to electromagnetic theory.
Lambda96
Messages
233
Reaction score
77
Homework Statement
Check the relation of the energy balance ##\partial_t \omega + \nabla \cdot \vec S=- \vec j \cdot \vec E##
Relevant Equations
none
Hi

I have a problem with task c)


Bildschirmfoto 2024-11-18 um 21.52.38.png

For the Poynting vector ##\vec S## and the energy density ##\omega## I got the following:

$$\vec S= \frac{1}{\mu_0} \frac{4 I_0^2}{c \varrho} \frac{t}{c^2 t^2 - \varrho^2} \Theta(ct-\varrho)^2 \vec{e}_\varrho$$
$$\omega= \frac{1}{2} \epsilon_0 \frac{4 I_0^2 \Theta(ct- \varrho)(\varrho^2+c^4t^2)}{c^4\varrho^2t^2-\varrho^4 c^2}$$

Then I calculated the following

$$\partial_t \omega=\frac{4 I_0^2 \epsilon_0(c^4t^2+\varrho^2)\delta(ct-\varrho)\Theta(ct-\varrho)}{c^3\varrho^2t^2-c\varrho^4}-\frac{4 I_0^2 (c^2+1)t \epsilon_0 \Theta(ct-\varrho)^2}{(c^2t^2-\varrho^2)^2}$$

and the i used the hint ##\nabla (f \vec v)=(\nabla f) \cdot \vec v + f \nabla \cdot \vec v##

$$(\nabla f) \cdot \vec v + f \nabla \cdot \vec v=\Biggl( - \frac{8 I_0 t \delta(ct-\varrho) \Theta(ct-\varrho)}{c^3 \mu t^2 \varrho-c \mu \varrho^3}-\frac{4 I_0 t (c^2t^2-3 \varrho^2)\Theta(ct-\varrho)^2}{c \mu (\varrho^3-c^2 t^2 \varrho)^2} \Biggr) \cdot \vec e_\varrho + \frac{1}{\mu_0} \frac{4 I_0^2}{c \varrho} \frac{t}{c^2 t^2 - \varrho^2} \Theta(ct-\varrho)^2 \cdot \vec e_\varphi$$

Unfortunately I don't know what I can do with it, the results are quite a mess or have I miscalculated and also in the task part b) ?
 
Physics news on Phys.org
The relation
\theta(x)^2=\theta(x)
might easen your calculation. In your calculation of

\omega= \frac{1}{2} \epsilon_0 \frac{4 I_0^2 \Theta(ct- \varrho)(\varrho^2+c^4t^2)}{c^4\varrho^2t^2-\varrho^4 c^2}

I find ##\varrho^2+c^4t^2## is strange in dimension.
 
Last edited:
Thank you anuttarasammyak for your help and the tip 👍


With ##\Theta(x)^2=\Theta(x)## the term now looks like this:

$$\partial_t \omega=\frac{2 I_0^2 \epsilon_0(c^4t^2+\varrho^2)\delta(ct-\varrho)}{c^3\varrho^2t^2-c\varrho^4}-\frac{4 I_0^2 (c^2+1)t \epsilon_0 \Theta(ct-\varrho)}{(c^2t^2-\varrho^2)^2}$$

Unfortunately, I still can't get any further with this term and I have recalculated and again get the term ##\varrho^2+c^4t^2## for ##\omega##
 
Lambda96 said:
I have recalculated and again get the term ##\varrho^2+c^4t^2## for ##\omega##
You clearly have an algebra error. The term ##\varrho^2+c^4t^2## is dimensionally inconsistent because ##\varrho\sim L,c\sim\frac{L}T{},t\sim T##.
 
The problem statement expresses the fields in Gaussian units. In these units the Poynting vector is ##\mathbf S = \dfrac {c}{4 \pi} \mathbf E \times \mathbf B## and the energy density is ##w = \dfrac{1}{8\pi}(E^2 + B^2)##.

Using the expressions for the fields given in the problem I find $$\mathbf S = \left[ \frac{I_0^2}{\pi} \frac{t}{c^2t^2 - \rho^2} \theta(ct-\rho) \right] \left(\frac{\hat e_{\rho}}{\rho} \right).$$ This is the same as your result except for differences in the constants. I could have made mistakes, so you can see whether or not you can get the same expression. The reason for writing the last factor as ##\dfrac{\hat e_{\rho}}{\rho}## is to prepare for using the divergence identity given in the problem statement.

The problem statement says ##\nabla \cdot \left( \dfrac{\hat e_{\rho}}{\rho} \right) = 2\pi \delta(\rho)##. Actually, this should be ##\nabla \cdot \left( \dfrac{\hat e_{\rho}}{\rho} \right) = 2\pi \delta^{(2)} (\boldsymbol {\rho})##, where the right side is the two-dimensional delta function ##\delta^{(2)} (\boldsymbol {\rho})## and ##\boldsymbol {\rho}## is the two-dimensional position vector for points in a plane perpendicular to the z-axis. The dimension of ##\delta(\rho)## is inverse length; whereas, the dimension of ##\delta^{(2)} (\boldsymbol {\rho})## is inverse area.

##\delta^{(2)} (\boldsymbol {\rho})## is useful for expressing the current density for this problem: $$\mathbf J(\boldsymbol {\rho}, t) = I(t)\delta^{(2)} (\boldsymbol {\rho}) \hat e_z$$
 
Last edited:
Very gross understanding towards poynting, what is j and E vector?
 
graphking said:
Very gross understanding towards poynting, what is j and E vector?
E is the electric field.

j is the current density vector. For current ##I## in a wire, j is a vector with magnitude equal to the current per unit cross-sectional area of the wire and j points in the direction of the current. For the limiting case of an infinitely thin wire, j can be expressed in terms of the current ##I## and a Dirac delta function. See the last equation in post #5.
 
  • Like
Likes MatinSAR, graphking, Lambda96 and 1 other person
Thanks for your help and explanation TSny 👍👍

I have repeated the calculation again with Gaussian units and get the same result for the Poynting vector
:smile:

You were right, instead of ##\nabla \cdot \left( \dfrac{\hat e_{\rho}}{\rho} \right) = 2\pi \delta(\rho)## it should be ##\nabla \cdot \left( \dfrac{\hat e_{\rho}}{\rho} \right) = 2\pi \delta^{(2)} (\boldsymbol {\rho})##. But my lecturer wrote it as ##\nabla \cdot \left( \dfrac{\hat e_{\rho}}{\rho} \right) = 2\pi \delta(x) \delta(y)##
 
Lambda96 said:
my lecturer wrote it as ##\nabla \cdot \left( \dfrac{\hat e_{\rho}}{\rho} \right) = 2\pi \delta(x) \delta(y)##
Good.
 
Back
Top