- #106
PeterDonis
Mentor
- 47,494
- 23,767
PeterDonis said:$$
\frac{\omega_{\infty}}{\Omega_{\infty}} = \frac{r^2 + a^2}{2 r^2 \sqrt{1 - 2M / r}} = \frac{1}{2} \left( 1 + \frac{a^2}{r^2} \right) \sqrt{\frac{r}{r - 2M}}
$$
Just realized that this isn't quite right; I missed a factor of ##\left( 1 + 2M / r \right)## multiplying ##a^2## in ##\Omega_{\infty}##. The correct formula for the ratio is
$$
\frac{\omega_{\infty}}{\Omega_{\infty}} = \frac{1}{2} \left[ 1 + \frac{a^2}{r^2} \left( 1 + \frac{2M}{r} \right) \right] \sqrt{\frac{r}{r - 2M}}
$$
This doesn't change any of the key conclusions, but I wanted to correct it for the record.