MHB Precalculus help --> cos2x=3/5 and 90<x<180

  • Thread starter Thread starter yeny
  • Start date Start date
  • Tags Tags
    Precalculus
AI Thread Summary
To solve the problem of finding the six trigonometric functions given cos(2θ) = 3/5 and 90° < θ < 180°, the first step is to recognize that θ is in the second quadrant. From the identity cos(2θ) = 2cos²(θ) - 1, it follows that cos²(θ) = 4/5, leading to cos(θ) = -2/√5. Additionally, sin²(θ) = 1/5 gives sin(θ) = 1/√5. The remaining trigonometric functions can be derived using basic identities, completing the solution.
yeny
Messages
7
Reaction score
0
Hello, can someone please help me with this problem?

I have to find the values of the 6 trig functions if the conditions provided hold

cos2(theta)=3/5

90 degrees is less than or equal to theta, and theta is also less than or equal to 180 degrees

THANK you so much.
 
Mathematics news on Phys.org
yeny said:
Hello, can someone please help me with this problem?

I have to find the values of the 6 trig functions if the conditions provided hold

cos2(theta)=3/5

90 degrees is less than or equal to theta, and theta is also less than or equal to 180 degrees

given $\cos(2\theta) = \dfrac{3}{5}$ and $\theta$ resides in quadrant II ...

$\cos(2\theta) = 2\cos^2{\theta} -1 = \dfrac{3}{5} \implies \cos^2{\theta} = \dfrac{4}{5} \implies \cos{\theta} = - \dfrac{2}{\sqrt{5}}$

$\sin^2{\theta} = \dfrac{1}{5} \implies \sin{\theta} = \dfrac{1}{\sqrt{5}}$

use your basic trig identities to determine the values of the remaining four
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top