Pressure difference between the top and bottom surfaces of this cube

AI Thread Summary
The discussion focuses on understanding the pressure difference between the top and bottom surfaces of a cube submerged in a fluid. It clarifies that ρ represents density, not pressure, and that ρl refers to the density of the liquid filling the cube. The pressure within the liquid increases with depth, which is crucial for calculating the pressure difference. The formula discussed relates to the gravitational force acting on the liquid column above the cube. Overall, the pressure difference is influenced by the depth and density of the fluid surrounding the cube.
Say17
Messages
11
Reaction score
1
Homework Statement
We consider the case where the wagon is at rest in profile view (below). Determine the pressure difference deltarho = rho under - delta on between the pressure under the inner surface of the cube and the pressure on the upper surface of the cube.
Relevant Equations
rho = F/A
Hi all,

I think I have to take the formula for pression. rho = F/A -> rho = ma/A but not sure, how to handle it here.

Image 23.06.23 at 17.09.jpeg


I thought, it should be rho under - rho above = pl*L - pc *a

Solution is: pl *g *a
 
Physics news on Phys.org
ρ stands for density, not pressure. ρl would be the density of the liquid that fills the wagon. (I presume that's what's going on here.)

How does pressure relate to the depth below the surface of a fluid?
 
It's the length from beginning of the cube till ground?
 
The pressure within the liquid depends on the depth below the surface. Pressure increases with depth.

Read this: Static Fluid Pressure
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top