- #1
shinobi20
- 280
- 20
- TL;DR Summary
- I'd like to confirm my calculations of the principal and Gaussian curvature of the spatial part of the Friedmann-Robertson-Walker (FRW) metric. Specifically, if the spatial part has negative curvature.
I would like to calculate the principal and Gaussian curvature of the spatial part of the Friedmann-Robertson-Walker (FRW) metric; specifically, the negative Gaussian curvature ##k=-1##. The FRW metric is,
\begin{equation*}
ds^2 = -dt^2 + R(t)^2 \left( \frac{dr^2}{1-k r^2} + r^2 d\Omega^2 \right)
\end{equation*}
For a certain time slice ##t = t_0##, the spatial part is,
\begin{align*}
& d\sigma^2 = R_0^2 \left( \frac{dr^2}{1-k r^2} + r^2 d\Omega^2 \right) \qquad R_0 \equiv R(t_0) \\
& d\sigma^2 = R_0^2 \left( \frac{dr^2}{1 + r^2} + r^2 d\Omega^2 \right), \qquad \text{k=-1}
\end{align*}
If we set ##r = \sinh \psi##, then we get the metric (also called the first fundamental form) for the 3d hyperboloid in angular coordinates,
\begin{align*}
& d\sigma^2 = R_0^2 \left( d\psi^2 + \sinh^2 \psi d\theta^2 + \sinh^2 \psi \sin^2\theta d\phi^2 \right)\\
& d\sigma^2 = h_{ab} dx^a dx^b
\end{align*}
\begin{equation*}
h_{ab} =
\begin{bmatrix}
R_0^2 & 0 & 0\\
0 & R_0^2 \sinh^2 \psi & 0\\
0 & 0 & R_0^2 \sinh^2 \psi \sin^2 \theta
\end{bmatrix}
\end{equation*}
The 3d hyperboloid can be embedded in 4d Minkowski space. Let ##g_{\mu\nu} = \text{diag}(-1,1,1,1)## be the Minkowski metric and ##h_{ab}## be the 3d hyperboloid metric in angular coordinates. The 3d hyperboloid in ##(x,y,z,w)## coordinates is described by the equation,
\begin{align*}
& x^2 + y^2 + z^2 -w^2 = -R_0^2\\
& f(x,y,z,w) = x^2 + y^2 + z^2 -w^2 + R_0^2
\end{align*}
The parameterization is,
\begin{equation*}
x = R_0 \sinh \psi \sin\theta \cos \phi, \quad y = R_0 \sinh \psi \sin\theta \sin \phi, \quad z = R_0 \sinh \psi \cos\theta, \quad w = R_0 \cosh \psi
\end{equation*}
Given the point ##\mathbf{v}^a = (x,y,z,w)## on the 3d hyperboloid, the tangent vectors ##\mathbf{e}_a## are,
\begin{align*}
& \mathbf{e}_\psi = R_0 \left( \cosh \psi \sin\theta \cos \phi, \cosh \psi \sin\theta \sin \phi, \cosh \psi \cos\theta, \sinh \psi \right)\\
& \mathbf{e}_\theta = R_0 \left( \sinh \psi \cos\theta \cos \phi, \sinh \psi \cos\theta \sin \phi, -\sinh \psi \sin\theta, 0 \right)\\
& \mathbf{e}_\phi = R_0 \left( -\sinh \psi \sin\theta \sin \phi, \sinh \psi \sin\theta \cos \phi, 0 , 0 \right)
\end{align*}
The normal vector ##N_\mu## on the 3d hyperboloid can be calculated as,
\begin{equation*}
N_\mu = -\nabla f(x,y,z,w)
\end{equation*}
The normalized normal vector ##n_\mu## is,
\begin{align*}
& n_\mu = \frac{N_\mu}{\sqrt{ | g^{\mu\nu} N_\mu N_\nu | }}\\
& n_\mu = \left( -\sinh \psi \sin\theta \cos \phi, -\sinh \psi \sin\theta \sin \phi, -\sinh \psi \cos\theta, \cosh \psi \right)
\end{align*}
We also need the derivative of the tangent vectors ##\partial_b \mathbf{e}_a##. The second fundamental form ##L_{ab}## can be calculated as,
\begin{equation*}
L_{ab} = g^{\mu\nu} (\partial_b \mathbf{e}_a)_\mu n_\nu, \quad
L_{ab} =
\begin{bmatrix}
-R_0 \cosh 2\psi & 0 & 0\\
0 & R_0 \sinh^2 \psi & 0\\
0 & 0 & R_0 \sinh^2 \psi \sin^2 \theta
\end{bmatrix}
\end{equation*}
The principal curvatures ##k_i## for ##i=1,2,3## are the eigenvalues of the matrix ##h^{-1} L##,
\begin{equation*}
k_1 = \frac{1}{R_0}, \quad k_2 = \frac{1}{R_0}, \quad k_3 = -\frac{\cosh 2\psi}{R_0}
\end{equation*}
The Gaussian curvature is ##k = k_1 k_2 k_3##.
Questions:
(1) Are my calculations correct?
(2) Are the answers for the principal curvatures correct?
(3) I'm wondering about ##k_3##. As I know the Gaussian curvature should be ##k=-1## for ##R_0 = 1##, but ##k_3 = -1## only for ##\psi = 0##. Can anyone help clarify and explain more about the principal curvatures of the 3d hyperboloid?
(4) Another thing I'm unsure of is the sign of the normal vector, if I remove the minus sign then ##k_1,k_2## becomes negative and ##k_3## becomes positive while maintaining the same magnitude.
\begin{equation*}
ds^2 = -dt^2 + R(t)^2 \left( \frac{dr^2}{1-k r^2} + r^2 d\Omega^2 \right)
\end{equation*}
For a certain time slice ##t = t_0##, the spatial part is,
\begin{align*}
& d\sigma^2 = R_0^2 \left( \frac{dr^2}{1-k r^2} + r^2 d\Omega^2 \right) \qquad R_0 \equiv R(t_0) \\
& d\sigma^2 = R_0^2 \left( \frac{dr^2}{1 + r^2} + r^2 d\Omega^2 \right), \qquad \text{k=-1}
\end{align*}
If we set ##r = \sinh \psi##, then we get the metric (also called the first fundamental form) for the 3d hyperboloid in angular coordinates,
\begin{align*}
& d\sigma^2 = R_0^2 \left( d\psi^2 + \sinh^2 \psi d\theta^2 + \sinh^2 \psi \sin^2\theta d\phi^2 \right)\\
& d\sigma^2 = h_{ab} dx^a dx^b
\end{align*}
\begin{equation*}
h_{ab} =
\begin{bmatrix}
R_0^2 & 0 & 0\\
0 & R_0^2 \sinh^2 \psi & 0\\
0 & 0 & R_0^2 \sinh^2 \psi \sin^2 \theta
\end{bmatrix}
\end{equation*}
The 3d hyperboloid can be embedded in 4d Minkowski space. Let ##g_{\mu\nu} = \text{diag}(-1,1,1,1)## be the Minkowski metric and ##h_{ab}## be the 3d hyperboloid metric in angular coordinates. The 3d hyperboloid in ##(x,y,z,w)## coordinates is described by the equation,
\begin{align*}
& x^2 + y^2 + z^2 -w^2 = -R_0^2\\
& f(x,y,z,w) = x^2 + y^2 + z^2 -w^2 + R_0^2
\end{align*}
The parameterization is,
\begin{equation*}
x = R_0 \sinh \psi \sin\theta \cos \phi, \quad y = R_0 \sinh \psi \sin\theta \sin \phi, \quad z = R_0 \sinh \psi \cos\theta, \quad w = R_0 \cosh \psi
\end{equation*}
Given the point ##\mathbf{v}^a = (x,y,z,w)## on the 3d hyperboloid, the tangent vectors ##\mathbf{e}_a## are,
\begin{align*}
& \mathbf{e}_\psi = R_0 \left( \cosh \psi \sin\theta \cos \phi, \cosh \psi \sin\theta \sin \phi, \cosh \psi \cos\theta, \sinh \psi \right)\\
& \mathbf{e}_\theta = R_0 \left( \sinh \psi \cos\theta \cos \phi, \sinh \psi \cos\theta \sin \phi, -\sinh \psi \sin\theta, 0 \right)\\
& \mathbf{e}_\phi = R_0 \left( -\sinh \psi \sin\theta \sin \phi, \sinh \psi \sin\theta \cos \phi, 0 , 0 \right)
\end{align*}
The normal vector ##N_\mu## on the 3d hyperboloid can be calculated as,
\begin{equation*}
N_\mu = -\nabla f(x,y,z,w)
\end{equation*}
The normalized normal vector ##n_\mu## is,
\begin{align*}
& n_\mu = \frac{N_\mu}{\sqrt{ | g^{\mu\nu} N_\mu N_\nu | }}\\
& n_\mu = \left( -\sinh \psi \sin\theta \cos \phi, -\sinh \psi \sin\theta \sin \phi, -\sinh \psi \cos\theta, \cosh \psi \right)
\end{align*}
We also need the derivative of the tangent vectors ##\partial_b \mathbf{e}_a##. The second fundamental form ##L_{ab}## can be calculated as,
\begin{equation*}
L_{ab} = g^{\mu\nu} (\partial_b \mathbf{e}_a)_\mu n_\nu, \quad
L_{ab} =
\begin{bmatrix}
-R_0 \cosh 2\psi & 0 & 0\\
0 & R_0 \sinh^2 \psi & 0\\
0 & 0 & R_0 \sinh^2 \psi \sin^2 \theta
\end{bmatrix}
\end{equation*}
The principal curvatures ##k_i## for ##i=1,2,3## are the eigenvalues of the matrix ##h^{-1} L##,
\begin{equation*}
k_1 = \frac{1}{R_0}, \quad k_2 = \frac{1}{R_0}, \quad k_3 = -\frac{\cosh 2\psi}{R_0}
\end{equation*}
The Gaussian curvature is ##k = k_1 k_2 k_3##.
Questions:
(1) Are my calculations correct?
(2) Are the answers for the principal curvatures correct?
(3) I'm wondering about ##k_3##. As I know the Gaussian curvature should be ##k=-1## for ##R_0 = 1##, but ##k_3 = -1## only for ##\psi = 0##. Can anyone help clarify and explain more about the principal curvatures of the 3d hyperboloid?
(4) Another thing I'm unsure of is the sign of the normal vector, if I remove the minus sign then ##k_1,k_2## becomes negative and ##k_3## becomes positive while maintaining the same magnitude.