- #1
Kashmir
- 468
- 74
Reif says
" ... variable ##u## which can assume any value in the continuous range ##a_{1}<u<a_{2}##. To give a probability description of such a situation, one can focus attention on any infinitesimal range of the variable between ##u## and ##u+d u## and ask for the probability that the variable assumes a value in this range. One expects that this probability is proportional to the magnitude of ##d u## if this interval is sufficiently small"
" Indeed, the probability must be expressible as a Taylor's series in powers of du and must vanish as ##d u \rightarrow 0##. Hence the leading term must be of the form ##P d u##, while terms involving higher powers of ##d u## are negligible if ##d u## is sufficiently small"So expanding probability function as Taylor series I've
##P(x+d x)=P(x)+\frac{P^{\prime}(x)}{1 !} d x+\frac{P^{\prime \prime}(x)}{2 !} d x^{2}+\cdots##
in limit ##dx## is small we've
##P(x+d x)=P(x)+{P'(x)} d x##
Now how do I make the connection that "probability is proportional to the magnitude of ##d x## if this interval is sufficiently small"?
" ... variable ##u## which can assume any value in the continuous range ##a_{1}<u<a_{2}##. To give a probability description of such a situation, one can focus attention on any infinitesimal range of the variable between ##u## and ##u+d u## and ask for the probability that the variable assumes a value in this range. One expects that this probability is proportional to the magnitude of ##d u## if this interval is sufficiently small"
" Indeed, the probability must be expressible as a Taylor's series in powers of du and must vanish as ##d u \rightarrow 0##. Hence the leading term must be of the form ##P d u##, while terms involving higher powers of ##d u## are negligible if ##d u## is sufficiently small"So expanding probability function as Taylor series I've
##P(x+d x)=P(x)+\frac{P^{\prime}(x)}{1 !} d x+\frac{P^{\prime \prime}(x)}{2 !} d x^{2}+\cdots##
in limit ##dx## is small we've
##P(x+d x)=P(x)+{P'(x)} d x##
Now how do I make the connection that "probability is proportional to the magnitude of ##d x## if this interval is sufficiently small"?
Last edited: