MHB Probability that 12 have purchased yellow gold diamond rings

AI Thread Summary
The discussion focuses on calculating the probability that 12 out of 20 individuals have purchased yellow gold diamond rings, given that 65% of all diamond rings sold in West Virginia are yellow gold. It is suggested that this scenario can be modeled using a binomial random variable. The relevant formula for this calculation is provided, which includes parameters for the number of trials, successes, and the probability of success. Participants are encouraged to apply the formula with the given values to find the probability. The conversation emphasizes the importance of confirming the method used for this probability calculation.
eatinbyzombies3
Messages
3
Reaction score
0
Let’s also say that 65% of all diamond rings sold in WV are yellow gold. In a random sample of 20 folks, what is the probability that 12 have purchased yellow gold diamond rings?thank you and I promise this is the last question today.:D
 
Mathematics news on Phys.org
re: probability that 12 have purchased yellow gold diamond rings

Hopefully someone else will confirm this approach, but it seems like you can interpret this to be a binomial random variable. If not then my apologies in advance. Let's say that $P[\text{gold}]=0.65$.

The general formula for a binomial random variable is:

$$P[X=k]=\binom{n}{k}p^{k}(1-p)^{n-k}$$

where $p$ is the success probability, $n$ is the number of trials and $k$ is the number of successes. Can you fill in the information?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top