Problem involving matrix multiplication and dot product in one proof

In summary, Matrix multiplication and dot product are essential operations used to simplify and solve complex problems involving systems of linear equations and vectors. They allow for efficient calculation and representation of mathematical relationships and transformations. Matrix multiplication differs from dot product in that it involves multiplying two matrices of compatible dimensions, while dot product involves multiplying two vectors of the same size and summing the products. These operations cannot be used interchangeably in a proof due to their different properties. However, in a proof, they are often used together to represent and solve a system of linear equations or to perform transformations on vectors. Some real-world applications of these operations include modeling and solving systems of linear equations, performing transformations in image and signal processing, and in machine learning and data analysis.
  • #1
gucci1
13
0
The problem is:

Let A be a real m x n matrix and let x be in R^n and y be in R^m (n and m dimensional real vector spaces, respectively). Show that the dot product of Ax with y equals the dot product of x with A^Ty (A^T is the transpose of A).

The way I went about starting this problem is to use the definitions where the definition of the dot product on real numbers is: the sum with k from 1 to n of ak * bk and the definition of matrix multiplication for the entries of Ax would each be of the form: sum from k=1 to k=n of Aik * xk1.

Hopefully that was clear enough, but what I come up with when I plug the second definition into the first is one sum inside another and it seems like either I'm missing something that I can simplify or I went in the wrong direction! Does anyone have any suggestions for what I could try here? Any help is appreciated :D
 
Physics news on Phys.org
  • #2
Have you tried relabelling the indices of your nested sum? That and using the fact that $A^T$ is the transpose of $A$ should lead you to a proof that the two expressions are the same.

What I mean is in your nested sum, reverse the two indices $i$ and $j$ (or whatever their name is) and then state that $A_{ij} = A^T_{ji}$, and that should give you the desired result.​
 
Last edited:
  • #3
gucci said:
The problem is:

Let A be a real m x n matrix and let x be in R^n and y be in R^m (n and m dimensional real vector spaces, respectively). Show that the dot product of Ax with y equals the dot product of x with A^Ty (A^T is the transpose of A).

The way I went about starting this problem is to use the definitions where the definition of the dot product on real numbers is: the sum with k from 1 to n of ak * bk and the definition of matrix multiplication for the entries of Ax would each be of the form: sum from k=1 to k=n of Aik * xk1.

Hopefully that was clear enough, but what I come up with when I plug the second definition into the first is one sum inside another and it seems like either I'm missing something that I can simplify or I went in the wrong direction! Does anyone have any suggestions for what I could try here? Any help is appreciated :D

Here's an alternative to index labeling; it involves using matrix multiplication and noting that you can express the dot product as follows:

\[(A\mathbf{x})\cdot \mathbf{y} = \mathbf{y}^TA\mathbf{x}.\]

Likewise, $(A^T\mathbf{y})\cdot\mathbf{x} = \mathbf{x}^TA^T\mathbf{y}=(\mathbf{y}^TA\mathbf{x})^T$. Since $\mathbf{x}^TA^T\mathbf{y}$ and $\mathbf{y}^TA\mathbf{x}$ are $1\times 1$ matrices, we must have
\[(\mathbf{x}^TA^T\mathbf{y})^T =\mathbf{x}^TA^T\mathbf{y}\quad\text{and} \quad (\mathbf{y}^TA\mathbf{x})^T = \mathbf{y}^TA\mathbf{x}\]
and thus
\[\mathbf{x}^TA^T\mathbf{y} = (\mathbf{y}^TA\mathbf{x})^T=\mathbf{y}^TA\mathbf{x}.\]

Therefore, it follows that
\[(A\mathbf{x})\cdot\mathbf{y} = \mathbf{y}^TA\mathbf{x} = (\mathbf{x}^T A^T\mathbf{y})^T = \mathbf{x}^TA^T\mathbf{y} = (A^T\mathbf{y})\cdot\mathbf{x}\]
which is what you were after.

I hope this makes sense!
 
  • #4
I would simplify the presentation by noting that for any 1x1 matrix $M$, $M^T = M$

(there is only the single diagonal element).

Thus:

$Ax \cdot y = (y^T)(Ax) = [(y^T)(Ax)]^T = (Ax)^T(y^T)^T = (x^TA^T)y = x^T(A^Ty) = A^Ty \cdot x = x \cdot A^Ty$

(this only works with REAL inner-product spaces, by the way)

This is pretty much the same as what Chris L T521 posted, but has fewer steps.

Working with just elements, we have, for:

$A = (a_{ij}), x = (x_1,\dots,x_m), y = (y_1,\dots,y_n)$

$\displaystyle Ax \cdot y = \sum_{i = 1}^m \left(\sum_{j = 1}^n a_{ij}x_j\right) y_i$

$ = (a_{11}x_1 + \cdots + a_{1n}x_n)y_1 + \cdots + (a_{m1}x_1 + \cdots + a_{mn}x_n)y_m$

$ = (a_{11}y_1 + \cdots + a_{m1}y_m)x_1 + \cdots (a_{1n}y_1 + \cdots + a_{mn}y_m)x_n$

(make sure you understand that each term $a_{ij}x_jy_i = a_{ij}y_ix_j$ only occurs once in each sum, we're just grouping them differently...in the first sum we're matching the row entry index of $A$ with the index of $y$, in the second sum we're matching the column index of $A$ with the index of $x$, and the transpose just switches rows with columns).

$\displaystyle = \sum_{j = 1}^n \left(\sum_{i = 1}^m a_{ji}y_i \right)x_j$

$= A^Ty \cdot x = x \cdot A^Ty$
 
  • #5
Chris L T521 said:
Here's an alternative to index labeling; it involves using matrix multiplication and noting that you can express the dot product as follows:

\[(A\mathbf{x})\cdot \mathbf{y} = \mathbf{y}^TA\mathbf{x}.\]

So I get why everything after this step would follow, and thank you all very much for that. I am just missing why this is a true assumption :-/
 
  • #6
gucci said:
So I get why everything after this step would follow, and thank you all very much for that. I am just missing why this is a true assumption :-/

Well if $\mathbf{u},\mathbb{v}\in\mathbb{R}^m$ where $\mathbf{u}=\begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m\end{pmatrix}$ and $\mathbf{v}=\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m\end{pmatrix}$, then we know that $\mathbf{u}\cdot \mathbf{v} = u_1v_1 + u_2v_2 + \ldots + u_mv_m$
(note that as a matrix, a scalar quantity is a $1\times 1$ matrix).

However, $\mathbf{u}$ and $\mathbf{v}$ are $m\times 1$ matrices; thus, if we were to express the dot product in terms of matrix multiplication, we must have one $m\times 1$ and one $1\times m$ matrix. Hence, we need to take the transpose of one of the vectors to accomplish this. With that said, we can then say that

\[\mathbf{u}\cdot\mathbf{v} = \mathbf{v}^T\mathbf{u} = \begin{pmatrix} v_1 & v_2 & \cdots & v_m \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m\end{pmatrix} = \begin{pmatrix}v_1u_1 + v_2u_2 + \ldots + v_mu_m\end{pmatrix} = \begin{pmatrix} u_1 & u_2 & \cdots & u_m\end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m\end{pmatrix} = \mathbf{u}^T\mathbf{v} = \mathbf{v}\cdot\mathbf{u}.\]

I hope this clarifies things!
 
  • #7
I'd like to point out that $B = A^T$ is the ONLY $n\times m$ matrix that makes:

$Ax \cdot y = x \cdot By$ true for ALL $x \in \Bbb R^n, y \in \Bbb R^m$.

For suppose $B$ is such a matrix. Since it holds for ALL $x,y$ it certainly must hold when:

$x = e_j = (0,\dots,1,\dots,0)$ (1 is in the $j$-th place) <--this vector is in $\Bbb R^n$
$y = e_i = (0,\dots,1,\dots,0)$ (1 is in the $i$-th place) <--this vector is in $\Bbb R^m$

Now $Ae_j = (a_{1j},\dots,a_{mj})$ (the $j$-th column of $A$) so

$Ae_j \cdot e_i = a_{ij}$ (the $i$-th entry of the $j$-th column of $A$).

By the same token, $Be_i = (b_{1i},\dots,b_{ni})$ and

$e_j \cdot Be_i = b_{ji}$.

Comparing the two (and using that $Ae_j \cdot e_i = e_j \cdot Be_i$), we see that: $b_{ji} = a_{ij}$, that is $B = A^T$.

So the equation $Ax \cdot y = x \cdot A^Ty$ can be used to DEFINE the transpose. This is actually useful later on when one is trying to define things in a "coordinates-free" way (Vector spaces don't come equipped with a "preferred" basis, we have to pick one, which is somewhat arbitrary. If we can prove things without using a particular chosen basis, our proof is "more general", which is typically seen as a GOOD thing in mathematics).
 

FAQ: Problem involving matrix multiplication and dot product in one proof

What is the purpose of using matrix multiplication and dot product in a proof?

The purpose of using these operations is to simplify and solve complex problems involving systems of linear equations and vectors. They allow for efficient calculation and representation of mathematical relationships and transformations.

How does matrix multiplication differ from dot product?

Matrix multiplication involves multiplying two matrices of compatible dimensions, while dot product involves multiplying two vectors of the same size and summing the products. Matrix multiplication results in a new matrix, while dot product results in a scalar value.

Can matrix multiplication and dot product be used interchangeably in a proof?

No, these operations have different properties and cannot be used interchangeably. Matrix multiplication is not commutative, while dot product is commutative. Additionally, matrix multiplication can only be performed between matrices of compatible dimensions, while dot product can only be performed between vectors of the same size.

How do matrix multiplication and dot product relate to each other in a proof?

In a proof, matrix multiplication and dot product are often used together to represent and solve a system of linear equations or to perform transformations on vectors. Matrix multiplication can be used to efficiently calculate the dot product of two vectors.

What are some real-world applications of using matrix multiplication and dot product in a proof?

Matrix multiplication and dot product are used in a variety of fields, including physics, engineering, and computer graphics. They can be used to model and solve systems of linear equations in economics and biology, and to perform transformations in image and signal processing. They are also crucial in machine learning and data analysis.

Similar threads

Replies
14
Views
2K
Replies
4
Views
2K
Replies
13
Views
1K
Replies
5
Views
1K
Replies
10
Views
2K
Replies
52
Views
3K
Replies
1
Views
720
Back
Top