- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
Products of ideals of K[x1, x2, x3, x3]
I am reading R.Y. Sharpe: Steps in Commutative Algebra. In chapter 2 on Ideals, on page 28 we find Exercise 2.27 which reads as follows: (see attachment)
------------------------------------------------------------------------------
2.27 Exercise: Let \(\displaystyle K\) be a field, and let \(\displaystyle R = K[x_1, x_2, x_3, x_4] \), the ring of polynomials over K in indeterminates x_1, x_2, x_3, x_4.
Set \(\displaystyle I = Rx_1 + Rx_2 \) and \(\displaystyle J = Rx_3 + Rx_4 \)
Show that \(\displaystyle IJ \ne \{fg: \ f \in I, g \in J \} \)
------------------------------------------------------------------------------
My problem is I seemed to have ended up showing that \(\displaystyle IJ = \{fg: \ f \in I, g \in J \} \) ... so obviously something is wrong with my working ...
Can someone please explain my error(s)?
My working is as follows:
--------------------------------------------------------------------------
\(\displaystyle Rx_1 = \{ fx_1 \ | \ f \in R \} \)
and Rx_2, Rx_3, Rx_4 are defined similarly.\(\displaystyle I = Rx_1 + Rx_2 \)
\(\displaystyle = \{ h+k \ | \ h \in Rx_1 , k \in Rx_2 \} \)
\(\displaystyle = \{ fx_1 + gx_2 \ | \ f, g \in R \} \)
and similarly
\(\displaystyle J = \{ hx_1 + kx_2 \ | \ h, k \in R \} \)
Then \(\displaystyle IJ = \) set of all finite sums of elements of the form \(\displaystyle lm \) with \(\displaystyle l \in I, m \in J \)
\(\displaystyle = \{ {\sum}_{i=1}^{n} l_im_i \ | \ n \in \mathbb{N}, l_i \in I, m_i \in J \} \)
\(\displaystyle = \{ {\sum}_{i=1}^{n} (f_ix_1 + g_ix_2)(h_ix_3 + k_ix_4) \ | \ f_i, g_i, h_i, k_i \in R \} \)
\(\displaystyle = \{ {\sum}_{i=1}^{n} f_ih_ix_1x_3 + f_ik_ix_1x_4 + g_ih_ix_2x_3 + g_ik_ix_2x_4 \ | \ f_i, g_i, h_i, k_i \in R \} \)
\(\displaystyle = \{ {\sum}_{i=1}^{n} l_ix_1x_3 + m_ix_1x_4 + p _ix_2x_3 + q_ix_2x_4 \ | \ l_i, m_i, p_i, q_i \in R \} \)
\(\displaystyle = lx_1x_3 + mx_1x_4 + px_2x_3 + x_2x_4 \ | \ l, m, p, q \in R \}\)
since we can put \(\displaystyle l_1 + l_2 + ... \ ... l_n = l \) and similarly with \(\displaystyle m, p, q \)Now consider the set \(\displaystyle \{ fg: \ f\in I, g \in J \} \)
\(\displaystyle \{ fg: \ f\in I, g \in J \} \)
\(\displaystyle = \{ (l_1x_1 + m_1x_2)(p_1x_3 + q_1x_4) \ | \ l_1, m_1, p_1, q_1 \in R \} \)
\(\displaystyle = \{ l_1p_1x_1x_3 + l_1q_1x_1x_4 + m_1p_1x_2x_3 + m_1q_1x_2x_4 \ | \ l_1, m_1, p_1, q_1 \in R \} \)
\(\displaystyle = \{ lx_1x_3 + mx_1x_4 + px_2x_3 + qx_2x_4 \ | \ l, m, p, q \in R \} \)BUT then \(\displaystyle IJ = \{fg: \ f \in I, g \in J \} \) ?
Can someone please explain my error(s)
Peter
I am reading R.Y. Sharpe: Steps in Commutative Algebra. In chapter 2 on Ideals, on page 28 we find Exercise 2.27 which reads as follows: (see attachment)
------------------------------------------------------------------------------
2.27 Exercise: Let \(\displaystyle K\) be a field, and let \(\displaystyle R = K[x_1, x_2, x_3, x_4] \), the ring of polynomials over K in indeterminates x_1, x_2, x_3, x_4.
Set \(\displaystyle I = Rx_1 + Rx_2 \) and \(\displaystyle J = Rx_3 + Rx_4 \)
Show that \(\displaystyle IJ \ne \{fg: \ f \in I, g \in J \} \)
------------------------------------------------------------------------------
My problem is I seemed to have ended up showing that \(\displaystyle IJ = \{fg: \ f \in I, g \in J \} \) ... so obviously something is wrong with my working ...
Can someone please explain my error(s)?
My working is as follows:
--------------------------------------------------------------------------
\(\displaystyle Rx_1 = \{ fx_1 \ | \ f \in R \} \)
and Rx_2, Rx_3, Rx_4 are defined similarly.\(\displaystyle I = Rx_1 + Rx_2 \)
\(\displaystyle = \{ h+k \ | \ h \in Rx_1 , k \in Rx_2 \} \)
\(\displaystyle = \{ fx_1 + gx_2 \ | \ f, g \in R \} \)
and similarly
\(\displaystyle J = \{ hx_1 + kx_2 \ | \ h, k \in R \} \)
Then \(\displaystyle IJ = \) set of all finite sums of elements of the form \(\displaystyle lm \) with \(\displaystyle l \in I, m \in J \)
\(\displaystyle = \{ {\sum}_{i=1}^{n} l_im_i \ | \ n \in \mathbb{N}, l_i \in I, m_i \in J \} \)
\(\displaystyle = \{ {\sum}_{i=1}^{n} (f_ix_1 + g_ix_2)(h_ix_3 + k_ix_4) \ | \ f_i, g_i, h_i, k_i \in R \} \)
\(\displaystyle = \{ {\sum}_{i=1}^{n} f_ih_ix_1x_3 + f_ik_ix_1x_4 + g_ih_ix_2x_3 + g_ik_ix_2x_4 \ | \ f_i, g_i, h_i, k_i \in R \} \)
\(\displaystyle = \{ {\sum}_{i=1}^{n} l_ix_1x_3 + m_ix_1x_4 + p _ix_2x_3 + q_ix_2x_4 \ | \ l_i, m_i, p_i, q_i \in R \} \)
\(\displaystyle = lx_1x_3 + mx_1x_4 + px_2x_3 + x_2x_4 \ | \ l, m, p, q \in R \}\)
since we can put \(\displaystyle l_1 + l_2 + ... \ ... l_n = l \) and similarly with \(\displaystyle m, p, q \)Now consider the set \(\displaystyle \{ fg: \ f\in I, g \in J \} \)
\(\displaystyle \{ fg: \ f\in I, g \in J \} \)
\(\displaystyle = \{ (l_1x_1 + m_1x_2)(p_1x_3 + q_1x_4) \ | \ l_1, m_1, p_1, q_1 \in R \} \)
\(\displaystyle = \{ l_1p_1x_1x_3 + l_1q_1x_1x_4 + m_1p_1x_2x_3 + m_1q_1x_2x_4 \ | \ l_1, m_1, p_1, q_1 \in R \} \)
\(\displaystyle = \{ lx_1x_3 + mx_1x_4 + px_2x_3 + qx_2x_4 \ | \ l, m, p, q \in R \} \)BUT then \(\displaystyle IJ = \{fg: \ f \in I, g \in J \} \) ?
Can someone please explain my error(s)
Peter
Last edited: