I Proof about pre-images of functions

AI Thread Summary
The discussion revolves around proving two properties related to functions and their pre-images: that L is a subset of f-inverse of f(L), and that f of f-inverse of P is a subset of P. Participants express difficulty in finding a proof and seek guidance. A hint suggests tracking a point from L through the function and its inverse to clarify the relationships. The conversation emphasizes the importance of logical order in the proof steps. Ultimately, the focus remains on understanding the definitions and applying them correctly to complete the proofs.
PhysicsRock
Messages
121
Reaction score
19
The problem reads: ##f:M \rightarrow N##, and ##L \subseteq M## and ##P \subseteq N##. Then prove that ##L \subseteq f^{-1}(f(L))## and ##f(f^{-1}(P)) \subseteq P##.
My co-students and I can't find a way to prove this. I hope, someone here will be able to help us out. It would be very appreciated.

Thank you in advance and have a great day everyone.
 
Mathematics news on Phys.org
If this is a textbook homework type of problem, then there is a section and a format for that and we are only allowed to give hints and guidance.
Hint: pick a point in the smaller subset side and track it through the operations.
 
FactChecker said:
If this is a textbook homework type of problem, then there is a section and a format for that and we are only allowed to give hints and guidance.
I guess I figured it out anyway, at least I tried. Thank you for the advice. I'll ask for a specific hint etc. next time.
 
PhysicsRock said:
The problem reads: ##f:M \rightarrow N##, and ##L \subseteq M## and ##P \subseteq N##. Then prove that ##L \subseteq f^{-1}(f(L))## and ##f(f^{-1}(P)) \subseteq P##.
My co-students and I can't find a way to prove this. I hope, someone here will be able to help us out. It would be very appreciated.

Thank you in advance and have a great day everyone.
Let ##x \in L##. Then ##y = f(x) \in f(L)##. Now, what is, by definition, ##f^{-1}(f(L))##? And why is ##x \in f^{-1}(f(L))##?

Hint: it might help conceptually (be less confusing) to let ##X = f(L)## so that ##y = f(x) \in X## and show that ##x \in f^{-1}(X)##.

PS the trick with these proofs is to get all the logical steps in the right order.
 
  • Like
Likes FactChecker and topsquark
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top