B Proof of Chain Rule: Understanding the Limits

AI Thread Summary
The discussion focuses on the proof of the Chain Rule in calculus, demonstrating how the derivative of a composite function is derived. The function E(k) is defined, and its continuity at k=0 is established, leading to the conclusion that the derivative of f(g(x)) can be expressed as f'(g(x))g'(x). Participants clarify doubts about the limits involving E(k) and the constancy of f'(g(x)) during the limit process, emphasizing that E(k) does not depend on h and that f'(g(x)) remains unchanged as h approaches 0. The conversation concludes with affirmations of understanding regarding these mathematical concepts.
mcastillo356
Gold Member
Messages
639
Reaction score
348
TL;DR Summary
I've got a proof of the Chain Rule, but basic questions about basic steps
First I quote the text, and then the attempts to solve the doubts:

"Proof of the Chain Rule

Be ##f## a differentiable function at the point ##u=g(x)##, with ##g## a differentiable function at ##x##. Be the function ##E(k)## described this way:
$$E(0)=0$$
$$E(k)=\dfrac{f(u+k)-f(u)}{k}-f'(u)\qquad\mbox{if}\;k\neq 0$$

By definition of derivative, ##\lim_{k \to{0}}{E(k)}=f'(u)-f'(u)=0=E(0)##, so ##E(k)## is continuous in ##k=0##. Also, be ##k=0## or not, we have

$$f(u+k)-f(u)=(f'(u)+E(k))k$$

Be now ##u=g(x)## and ##k=g(x+h)-g(x)##, so ##u+k=g(x+h)##; we obtain

$$f(g(x+h))-f(g(x))=(f'(g(x))+E(k))(g(x+h)-g(x))$$

As ##g## is differentiable at ##x##, ##\lim_{h \to{0}}{[g(x+h)-g(x)]/h}=g'(x)##. Also, ##g## is continuous at ##x##, by Theorem 1
THEOREM 1 Being differentiable means being continous

If ##f## is differentiable at ##x##, we know it exists

$$\displaystyle\lim_{h \to{0}}{\dfrac{f(x+h)-f(x)}{h}}=f'(x)$$

Using the rules of limits (Theorem 2 of section 1.2)

Rules for limits

If ##\lim_{x \to a}{f(x)}=L##, ##\lim_{x \to a}{g(x)}=M##, and ##k## is a constant, then

1. Limit of a sum: ##\displaystyle\lim_{x \to{a}}{[f(x)+g(x)]}=L+M##
2. Limit of a subtraction: ##\displaystyle\lim_{x \to{a}}{[f(x)+g(x)]}=L+M##
3. Limit of a product: ##\displaystyle\lim_{x \to{a}}{f(x)g(x)}=LM##
4. Limit of a function multiplied by a constant: ##\displaystyle\lim_{x \to{a}}{kf(x)}=kL##
5. Limit of a division: ##\displaystyle\lim_{x \to a}{\dfrac{f(x)}{g(x)}}=\dfrac{L}{M}\qquad\mbox{if}\;M\neq 0##
If ##m## is an integer and ##n## a positive integer, then
6. Limit of a power: ##\displaystyle\lim_{x \to{a}}{[f(x)]^{m/n}}=L^{m/n}##, whenever ##L>0## if ##n## is even, and ##L\neq 0## if ##m<0##
If ##f(x)\geq g(x)## at an interval that contains ##a## inside, then
7. Order preservation: ##L\geq M##

we have

$$\lim_{h \to{0}}{f(x+h)-f(x))}=\lim_{h \to{0}}{\left (\dfrac{f(x+h)-f(x)}{h}\right)(h)}=(f'(x))(0)=0$$

This is equivalent to ##\lim_{h \to{0}}{f(x+h)=f(x)}##, and means ##f## is continous.So ##\lim_{h \to{0}}{E(k)}=\lim_{h \to{0}}{(g(x+h)-g(h)=0}##. As ##E## is continuous in 0, ##\lim_{h \to{0}}{E(k)}=\lim_{k \to{0}}{E(k)}=E(0)=0##. This way,

$$\dfrac{d}{dx}f(g(x))=\displaystyle\lim_{h \to{0}}{\dfrac{f(g(x+h))-f(g(x))}{h}}$$

$$ \qquad\qquad\qquad=\displaystyle\lim_{h \to{0}}{(f'(g(x)+E(k))\dfrac{g(x+h)-g(x)}{h}}$$

$$\qquad\qquad\qquad=(f'(g(x)+0)g(x)=f'(g(x))g'(x)$$

As we wanted to prove."

Doubts:

-¿##\lim_{h \to{0}}{E(k)}=\lim_{k \to{0}}{E(k)}##?

Attempt: ##\lim_{h \to{0}}{E(k)}=\displaystyle\lim_{h \to{0}}{\dfrac{E(k+h)-E(k)}{h}}=\displaystyle\lim_{k \to{0}}{\dfrac{E(k)-E(0)}{k-0}}## (Bad, I guess)

-¿Why ##f'(g(x))## remains the same at the last step?:

$$ \qquad\qquad\qquad=\displaystyle\lim_{h \to{0}}{(f'(g(x)+E(k))\dfrac{g(x+h)-g(x)}{h}}$$

$$\qquad\qquad\qquad=(f'(g(x)+0)g(x)=f'(g(x))g'(x)$$

Attempt: are different variables

Greetings to everybody, have a nice St Joseph's Day!
 
Mathematics news on Phys.org
mcastillo356 said:
-¿limh→0E(k)=limk→0E(k)?
No. ##\lim_{h \to 0} E(k) = E(k)##, since E(k) doesn't involve h in any way.

For the same reason, if f(x) = 2x + 3, ##\lim_{z \to 19} f(x) = f(x)##
 
  • Love
Likes mcastillo356
Thanks!
Greetings
 
mcastillo356 said:
-¿Why f′(g(x)) remains the same at the last step?:
For the same reason as before -- f'(g(x)) doesn't involve h, so in the limit process (with h approaching 0), f'(g(x)) is unaffected.
 
  • Like
Likes mcastillo356
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
2
Views
1K
Replies
12
Views
900
Replies
11
Views
2K
Replies
7
Views
2K
Replies
4
Views
1K
Replies
2
Views
2K
Replies
2
Views
2K
Back
Top