- #36
Fredrik
Staff Emeritus
Science Advisor
Gold Member
- 10,877
- 423
Are you trying to show us that the reply doesn't arrive before the message was sent? I agree that you have found a scenario where it doesn't, but your scenario is very different from what we've been discussing. The speed of the reply message in B's rest frame is supposed to be the same as the speed of the original message in A's rest frame. Also, a speed of 2c (or any speed less than infinite) will be sufficient if and only if A and B are sufficiently far apart when the original message is sent.phyti said:In drawing ftl2 the ftl signal moves at 2c. B moves at .5c, with c=1
Using the SR synch convention (radar or pinging method), the emission event A(x,t)=(0,1) is assigned to B(x,t)=(-.58,1.15),
and the detection event A(x,t)=(0,1.67) is assigned to B(x,t)=(-.96,1.92).
B calculates the incoming signal as instantaneous,
and the outgoing signal at .96/(1.92-1.15)=1.25.
In drawing ftl3 the ftl signal is instantaneous. B moves at .5c, with c=1
Since the time of travel is zero, and equivalent to zero distance, emission, reflection, and detection events are simultaneous and coincident for A. Thus must be coincident for all frames.
There could be any number of cycles relative to A in zero time. No information can be obtained in zero time. The same radar method does not work for this case because it requires a finite amount of time.
This is the view of universal time, before SR, i.e. observers see events in real time(as it happens).