- #1
ozkan12
- 149
- 0
Let $f$ be a mapping of a metric space $M$ into itself. For $A\subset M$ let $\And(A)=sup\left\{d(a,b);a,b\in A\right\}$ and for each $x\in M$, let $O(x,n)=\left\{x,Tx,...{T}^{n}x\right\}$ $n=1,2,3...$
$O(x,\infty)=\left\{x,Tx,...\right\}$ Please prove that $\And[O(x,\infty)]=sup\left\{\And[O(x,n)]:n\in\Bbb{N}\right\}$...Thank you for your attention...Best wishes...
$O(x,\infty)=\left\{x,Tx,...\right\}$ Please prove that $\And[O(x,\infty)]=sup\left\{\And[O(x,n)]:n\in\Bbb{N}\right\}$...Thank you for your attention...Best wishes...