Properties of exponential/logarithm

  • MHB
  • Thread starter mathmari
  • Start date
  • Tags
    Properties
In summary, we have proved the following properties: 1. $\left (e^x\right )^y=e^{xy}$ 2. $\ln (1)=0$ 3. $\ln \left (x^y\right )=y\ln (x)$ 4. $a^x\cdot a^y=a^{x+y}$ 5. $\frac{a^x}{a^y}=a^{x-y}$ 6. $a^x\cdot b^x=\left (ab\right )^x$ 7. $\frac{a^x}{b^x}=\left (\frac{a}{b}\right )^x$ 8.
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :eek:

I want to prove the following properties:
  1. $\left (e^x\right )^y=e^{xy}$
  2. $\ln (1)=0$
  3. $\ln \left (x^y\right )=y\ln (x)$
  4. $a^x\cdot a^y=a^{x+y}$ and $\frac{a^x}{a^y}=a^{x-y}$
  5. $a^x\cdot b^x=\left (ab\right )^x$ and $\frac{a^x}{b^x}=\left (\frac{a}{b}\right )^x$
  6. $\left (a^x\right )^y=a^{xy}$
I have done the following:

  1. We have that $\displaystyle{\left (e^x\right )^y=e^{\ln \left (e^x\right )^y}=e^{y\cdot \ln e^x}=e^{y\cdot x}=e^{xy}}$

    We used the rule $\displaystyle{\log \left (x^a\right )=a\cdot \log x}$.
  2. We have that $e^0=1$. We apply the logarithm and we get $\displaystyle{\ln \left (e^0\right )=\ln (1)\Rightarrow 0\cdot \ln (e)=\ln (1)\Rightarrow 0=\ln (1)}$.
  3. We have that $e^{\ln x}=x$. We raise the equation to $n$ and we get $\left (e^{\ln x}\right )^y=x^y \Rightarrow e^{y\cdot \ln x}=x^y$. We take the logarithm of the equation and we get $\ln \left (e^{y\cdot \ln x}\right )=\ln \left (x^y\right ) \Rightarrow y\cdot \ln x=\ln \left (x^y\right )$.

    At 1. I used this rule, although I proved that here. Would there be also an other way to prove the property 1.? (Wondering)

Is everything correct so far? (Wondering)

Could you give me a hint for the remaining $3$ properties? Do we use the previous properties? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Assuming you are taking [tex]e^x[/tex] as defined and then defining [tex]ln(x)[/tex] as it's inverse function then, yes, those are correct.
 
  • #3
Ok! (Yes) For the remaining three properties I have done now the following:

4. We have that $a^x=e^{\ln \left (a^x\right )}$ and $a^y=e^{\ln \left (a^y\right )}$.

We multily the two terms and we get \begin{equation*}a^x\cdot a^y=e^{\ln \left (a^x\right )}\cdot e^{\ln \left (a^y\right )}=e^{\ln \left (a^x\right )+\ln \left (a^y\right )}=e^{x\cdot \ln \left (a\right )+y\cdot \ln \left (a\right )}=e^{(x+y)\cdot \ln \left (a\right )}=e^{ \ln \left (a^{x+y}\right )}=a^{x+y}\end{equation*}

For the second property we divide the terms above and we get \begin{equation*}\frac{a^x}{ a^y}=\frac{e^{\ln \left (a^x\right )}}{ e^{\ln \left (a^y\right )}}=e^{\ln \left (a^x\right )-\ln \left (a^y\right )}=e^{x\cdot \ln \left (a\right )-y\cdot \ln \left (a\right )}=e^{(x-y)\cdot \ln \left (a\right )}=e^{ \ln \left (a^{x-y}\right )}=a^{x-y}\end{equation*}
5. We multily the two terms and we get \begin{equation*}a^x\cdot b^x=e^{\ln \left (a^x\right )}\cdot e^{\ln \left (b^x\right )}=e^{\ln \left (a^x\right )+\ln \left (b^x\right )}=e^{x\cdot \ln \left (a\right )+x\cdot \ln \left (b\right )}=e^{x\cdot \left (\ln \left (a\right )+\ln \left (b\right )\right )}=e^{x\cdot \ln \left (ab\right )}=e^{ \ln \left (ab\right )^x}=\left (ab\right )^x\end{equation*}

For the second property we divide the terms above and we get \begin{equation*}\frac{a^x}{ b^x}=\frac{e^{\ln \left (a^x\right )}}{ e^{\ln \left (b^x\right )}}=e^{\ln \left (a^x\right )-\ln \left (b^x\right )}=e^{x\cdot \ln \left (a\right )-x\cdot \ln \left (b\right )}=e^{x\cdot \left (\ln \left (a\right )-\ln \left (b\right )\right )}=e^{x\cdot \ln \left (\frac{a}{b}\right )}=e^{ \ln \left (\frac{a}{b}\right )^x}=\left (\frac{a}{b}\right )^x\end{equation*}
6. We have that $a^x=e^{\ln \left (a^x\right )}$.

We get\begin{equation*}\left (a^x\right )^y=\left (e^{\ln \left (a^x\right )}\right )^y\overset{(1)}{=}e^{y\ln \left (a^x\right )}=e^{xy\ln \left (a\right )}=e^{\ln \left (a^{xy}\right )}=a^{xy}\end{equation*}
Are these proofs also correct? (Wondering)
 
  • #4
mathmari said:
3. $\ln \left (x^y\right )=y\ln (x)$

At 1. I used this rule, although I proved that here. Would there be also an other way to prove the property 1.?

We can do this one differently with the equivalent definition $\ln x \overset{\text{def}}{=} \int_1^x \frac{du}{u}$ and the substitution rule. (Thinking)

mathmari said:
For the remaining three properties I have done now the following:

4. We have that $a^x=e^{\ln \left (a^x\right )}$ and $a^y=e^{\ln \left (a^y\right )}$.

We multily the two terms and we get \begin{equation*}a^x\cdot a^y=e^{\ln \left (a^x\right )}\cdot e^{\ln \left (a^y\right )}=e^{\ln \left (a^x\right )+\ln \left (a^y\right )}=e^{x\cdot \ln \left (a\right )+y\cdot \ln \left (a\right )}=e^{(x+y)\cdot \ln \left (a\right )}=e^{ \ln \left (a^{x+y}\right )}=a^{x+y}\end{equation*}

For the second property we divide the terms above and we get \begin{equation*}\frac{a^x}{ a^y}=\frac{e^{\ln \left (a^x\right )}}{ e^{\ln \left (a^y\right )}}=e^{\ln \left (a^x\right )-\ln \left (a^y\right )}=e^{x\cdot \ln \left (a\right )-y\cdot \ln \left (a\right )}=e^{(x-y)\cdot \ln \left (a\right )}=e^{ \ln \left (a^{x-y}\right )}=a^{x-y}\end{equation*}
5. We multily the two terms and we get \begin{equation*}a^x\cdot b^x=e^{\ln \left (a^x\right )}\cdot e^{\ln \left (b^x\right )}=e^{\ln \left (a^x\right )+\ln \left (b^x\right )}=e^{x\cdot \ln \left (a\right )+x\cdot \ln \left (b\right )}=e^{x\cdot \left (\ln \left (a\right )+\ln \left (b\right )\right )}=e^{x\cdot \ln \left (ab\right )}=e^{ \ln \left (ab\right )^x}=\left (ab\right )^x\end{equation*}

For the second property we divide the terms above and we get \begin{equation*}\frac{a^x}{ b^x}=\frac{e^{\ln \left (a^x\right )}}{ e^{\ln \left (b^x\right )}}=e^{\ln \left (a^x\right )-\ln \left (b^x\right )}=e^{x\cdot \ln \left (a\right )-x\cdot \ln \left (b\right )}=e^{x\cdot \left (\ln \left (a\right )-\ln \left (b\right )\right )}=e^{x\cdot \ln \left (\frac{a}{b}\right )}=e^{ \ln \left (\frac{a}{b}\right )^x}=\left (\frac{a}{b}\right )^x\end{equation*}
6. We have that $a^x=e^{\ln \left (a^x\right )}$.

We get\begin{equation*}\left (a^x\right )^y=\left (e^{\ln \left (a^x\right )}\right )^y\overset{(1)}{=}e^{y\ln \left (a^x\right )}=e^{xy\ln \left (a\right )}=e^{\ln \left (a^{xy}\right )}=a^{xy}\end{equation*}
Are these proofs also correct?

Yep. Correct. (Nod)

Btw, we might also use the properties $\ln(x\cdot y)=\ln x+\ln y$ and $\ln(x^y)=y\ln x$ and the fact that $\ln$ is bijective to find:
$$\ln(a^x\cdot a^y)=\ln(a^x)+\ln(a^y)=x\ln a+y\ln a=(x+y)\ln a=\ln(a^{x+y}) \implies a^x\cdot a^y=a^{x+y}$$
(Thinking)
 
  • #5
I first learned exponentials an logarithms, like most people, learning about [tex]e^x[/tex] first then having [tex]ln(x)[/tex] defined as the inverse function to [tex]e^x[/tex]. But one can, as Klaas Van Aarsen suggests, define [tex]ln(x)[/tex] as [tex]\int_1^\infty \frac{1}{t}dt[/tex]. From that we can immediately (well, the first time I worked on this it took a little longer!)
show
that:

1) Since 1/x is continuous for all non-zero x but is not defined for x= 0, and the integral starts at t= 1> 0, ln(x) is defined for all positive x but is not defined for x 0 or negative.

2) Since ln(x) is defined as an integral, ln(x) is continuous and differentiable for all positive x and the derivative is 1/x.

3) [tex]ln(1)= \int_1^1 \frac{1}{t}dt= 0[/tex]..

4) Since the derivative is positive, ln(x) is an increasing function. ln(x) is negative for x< 1 and positive for x>1 and, in fact, [tex]\lim_{x\to\infty} ln(x)= \infty[/tex] and [tex]\lim_{x\to -\infty} ln(x)= -\infty[/tex].

5) [tex]ln(1/x)= \int_1^{1/x} \frac{1}{t}dt[/tex]. Let [tex]y= 1/t[/tex] so that [tex]t= 1/y[/tex] and [tex]dt= -1/y^2 dy[/tex]. When [tex]t= 1[/tex] [tex]y= 1/1= 1[/tex] and when [tex]t= 1/x[/tex] [tex]y= x[/tex]. So the integral becomes [tex]\int_1^x y\frac{-1}{y^2}dy= -\int_1^x \frac{1}{y}dy= -ln(x)[/tex]. So [tex]ln(1/x)= -ln(x)[/tex].

6) [tex]ln(xy)= \int_1^{xy}\frac{1}{t}dt[/tex]. Let [tex]z= t/y[/tex] so that [tex]t= yz[/tex], [tex]dz=y dt[/tex]. When t= 1, z= 1/y and when t= xy, z= x. The integral becomes [tex]\int_{1/y}^x \frac{1}{yz}ydz= \int_{1/y}^x \frac{1}{z}dz[/tex]. We can write that as [tex]\int_{1/y}^1 \frac{1}{z}dz+ \int_{1}^x\frac{1}{z}dz= -\int_{1}^{1/y}\frac{1}{z}dz+ \int_1^x \frac{1}{z}dz= -(-ln(y))+ ln(x)= ln(x)+ ln(y)[/tex]. So ln(xy)= ln(x)+ ln(y).

7) [tex]ln(x^y)= \int_1^{x^y}\frac{1}{t}dt[/tex]. If y is not 0, let [tex]z= t^{1/y}[/tex] so that [tex]t= z^y[/tex] and [tex]dt= yz^{y-1}dz[/tez]. When t= 1, [tex]z= 1^{1/y}= 1[/tex] and when [tex]t= x^y[/tex], [tex]z= (x^y)^{1/y}= x[tex]. The integral becomes [tex]\int_1^x\frac{1}{z^y}(yz^{y-1}dz= \int_1^x\frac{y}{z}dz= y\int_1^x\frac{1}{z}dz= yln(x)[/tex]. If y= 0, [tex]x^0= 1[tex] and we already know that ln(1)= 0= 0(ln(x)). So [tex]ln(x^y)= y ln(x)[/tex].

We know that ln(x) is an increasing (so one-to-one) function from "positive real numbers" to "all real numbers" so it has an inverse function from "all real numbers" to "positive real numbers". Let "E(x)" be that inverse function. We can prove a number of properties, such as E(x+y)= E(x)E(y) and E(x)^y= E(xy) but the most important are these:

If E(x)= y then x= ln(y). If x is not 0 we can write that as [tex]1= (1/x)ln(y)= ln(y^{1/x})[/tex]. Reversing, [tex]Exp(1)= y^{1/x}[/tex] so that [tex]y= Exp(x)= (Exp(1))^x[/tex]. That is, the inverse function to ln(x) really is just some number, Exp(1), to the x power. If we define "e" to be Exp(1) (so that ln(e)= 1) then the inverse function to f(x)= ln(x) is [tex]f^{-1}(x)= e^x[/tex]. If x= 0 then, since ln(1)= 0, Exp(0)= 1 and any non-zero number, in particular e, to the 0 power is 1.

Finally, if [tex]y= e^x[/tex] then [tex]x= ln(y)[/tex] so [tex]\frac{dx}{dy}= \frac{1}{y}[/tex]. Then [tex]\frac{dy}{dx}= \frac{1}{\frac{1}{y}}= y[/tex]. That is [tex]\frac{de^x}{dx}= e^x[/tex].
 
Last edited by a moderator:

FAQ: Properties of exponential/logarithm

What is an exponential function?

An exponential function is a mathematical function where the independent variable, typically denoted as x, is in the exponent. The general form of an exponential function is y = ab^x, where a and b are constants. Exponential functions are commonly used to model growth or decay in various natural phenomena.

What are the properties of exponential functions?

The properties of exponential functions include:

  • When the base (b) is greater than 1, the function has exponential growth. When the base is between 0 and 1, the function has exponential decay.
  • The graph of an exponential function is always increasing or decreasing, but never flat.
  • Exponential functions have a horizontal asymptote at y = 0 when the base is between 0 and 1.
  • When the base is greater than 1, the function will have a vertical asymptote at x = 0.

What is a logarithmic function?

A logarithmic function is the inverse of an exponential function. It is written in the form y = logb(x), where b is the base. Logarithmic functions are used to solve equations where the variable is in the exponent.

What are the properties of logarithmic functions?

The properties of logarithmic functions include:

  • The domain of a logarithmic function is all positive real numbers.
  • The range of a logarithmic function is all real numbers.
  • The graph of a logarithmic function is always increasing or decreasing, but never flat.
  • The inverse of a logarithmic function is an exponential function.

How are exponential and logarithmic functions related?

Exponential and logarithmic functions are inversely related. This means that if an exponential function has the form y = ab^x, the corresponding logarithmic function will have the form y = logb(x). In other words, exponential functions "undo" the effects of logarithmic functions, and vice versa.

Similar threads

Replies
5
Views
1K
Replies
3
Views
2K
Replies
4
Views
3K
Replies
10
Views
2K
Replies
3
Views
1K
Replies
4
Views
2K
Back
Top