Prove angular momentum operator identity

AI Thread Summary
The discussion revolves around proving the angular momentum operator identity, specifically showing that \(\hat{L}^2\) can be expressed in terms of differential operators. Participants are working through the operator identity \(\hat{L}^2 = \hat{L}_-\hat{L}_+ + \hat{L}_z^2 + \hbar\hat{L}_z\) and attempting to simplify the resulting expressions. Key challenges include correctly handling operator products and ensuring proper differentiation rules are applied. The conversation highlights the importance of understanding operator algebra and the nuances of dealing with angular momentum operators in quantum mechanics. The thread concludes with a suggestion to focus on the product of operators and apply differentiation rules systematically.
Tom_12
Messages
6
Reaction score
0

Homework Statement



Using the operator identity:
<br /> \hat{L}^2=\hat{L}_-\hat{L}_+ +\hat{L}_z^2 + \hbar\hat{L}_z<br /> show explicitly:
<br /> \hat{L}^2 = -\hbar^2 \left[<br /> \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\phi^2} +<br /> \frac{1}{\sin\theta} \frac{\partial}{\partial\theta}<br /> \left(\sin\theta\frac{\partial}{\partial\theta}\right)<br /> \right]<br />(Note: all L are operators, i.e. L(hat))

Homework Equations


<br /> \hat{L}_\pm = \hbar e^{\pm i\phi}\left(\pm \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) \\<br /> \hat{L}_z = -i\hbar \frac{\partial}{\partial\phi}<br />

The Attempt at a Solution



\begin{align*}
\hat{L}^2 &= \hat{L}_-\hat{L}_+ + \hat{L}_z^2 + \hbar \hat{L}_z \\
&= \hbar e^{-i\phi}\left(- \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) \times \hbar e^{+i\phi}\left(+ \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) + \left(-i\hbar \frac{\partial}{\partial\phi}\right)^2 + \hbar \left(-i\hbar \frac{\partial}{\partial\phi}\right) \\
&= \hbar^2\left[\left(- \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)\left( \frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)\right] -\hbar^2\frac{\partial^2}{\partial\phi^2} - i\hbar^2\frac{\partial}{\partial\phi} \\
&= -\hbar^2\left[\left( \frac{\partial}{\partial\theta}\right)^2 + \left(\cot\theta\right)^2 + \left(\frac{\partial}{\partial\phi}\right)^2 + i\frac{\partial}{\partial\phi}\right] \\
&= -\hbar^2\left[\left( \frac{\partial}{\partial\theta}\right)^2 + \left(\frac{\partial}{\partial\phi}\right)^2\left(\cot^2\theta+1\right) + i\frac{\partial}{\partial\phi}\right] \\
&= -\hbar^2\left[\left( \frac{\partial}{\partial\theta}\right)^2 + \left(\frac{\partial}{\partial\phi}\right)^2\left(\frac{1}{\sin^2\theta}\right) + i\frac{\partial}{\partial\phi}\right]
\end{align*}

not sure how to procced from here, it's close to the required form but I do not know how to deal with the i\frac{\partial}{\partial\phi} term or I might have made mistakes...

Hope someone can help, thanks
 
Last edited by a moderator:
Physics news on Phys.org
Hi Tom, welcome to PF!

Tom_12 said:
<br /> =\hbar e^{-i\phi}(-∂/∂θ+icotθ∂/∂\phi) \times \hbar e^{+i\phi}(+∂/∂θ+icotθ∂/∂\phi) +(-i\hbar ∂/∂\phi)^2 + \hbar -i\hbar ∂/∂\phi<br />
<br /> =\hbar^2[(-∂/∂θ+icotθ∂/∂\phi)(∂/∂θ+icotθ∂/∂\phi)]-\hbar^2∂^2/∂\phi ^2-i\hbar^2∂/∂\phi <br />
In this step, you seem to have forgotten that you are dealing with operators. For instance, you can't just cancel out ##e^{-i\phi}## and ##e^{+i\phi}## because there is a ##∂/∂\phi## inbetween them.
 
DrClaude said:
Hi Tom, welcome to PF!In this step, you seem to have forgotten that you are dealing with operators. For instance, you can't just cancel out ##e^{-i\phi}## and ##e^{+i\phi}## because there is a ##\frac{\partial}{\partial\phi}## in between them.

Ok, I have no idea if what I'm doing is right, but would really appreciate some guidance here:
\begin{align*}
&= \hbar e^{-i\phi} \left(-\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)
\hbar e^{+i\phi} \left(+\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) +
\left(-i\hbar\frac{\partial}{\partial\phi}\right)^2 -
i\hbar \frac{\partial}{\partial\phi} \\
&= \hbar \left(e^{-i\phi}\left(-\frac{\partial}{\partial\theta}\right) + ie^{-i\phi}\cot\theta\frac{\partial}{\partial\phi}\right) \hbar \left(e^{+i\phi}\left(\frac{\partial}{\partial\theta}\right) + ie^{+i\phi}\cot\theta\frac{\partial}{\partial\phi}\right) +\left(-i\hbar \frac{\partial}{\partial\phi}\right)^2 -i\hbar \frac{\partial}{\partial\phi} \\
&= -\hbar^2 \left[e^{-2i\phi} \left(\frac{\partial}{\partial\theta}\right)^2 - e^{-2i\phi}\cot\theta\frac{\partial}{\partial\theta} - \cot\theta\frac{\partial}{\partial\theta} + \cot^2\theta + \left(\frac{\partial}{\partial\phi}\right)^2 + i\frac{\partial}{\partial\phi}\right] \\
&= -\hbar^2 \left[e^{-2i\phi} \left(\frac{\partial}{\partial\theta}\right)^2 + e^{-2i\phi}\csc^2\theta + \csc^2\theta + \cot^2\theta +\left(\frac{\partial}{\partial\phi}\right)^2 + i\frac{\partial}{\partial\phi}\right]
\end{align*}
I think I'm doing something where as this doesn't seem to be going anyway...
 
Last edited by a moderator:
Start by considering only ##\hat{L}_- \hat{L}_+##:
$$
\hat{L}_- \hat{L}_+ = \hbar^2 e^{-i \phi} \left( - \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) e^{i \phi} \left( \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)
$$
If you distribute ##\hat{L}_-## on ##\hat{L}_+##,
$$
\frac{\hat{L}_- \hat{L}_+}{\hbar^2} = - e^{-i \phi} \frac{\partial}{\partial \theta} e^{i \phi} \left( \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi}\right) + e^{-i \phi} i \cot \theta \frac{\partial}{\partial \phi} \left[ e^{i \phi} \left( \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) \right]
$$
Then
$$
- e^{-i \phi} \frac{\partial}{\partial \theta} \left( e^{i \phi} \frac{\partial}{\partial \theta} \right) = - \frac{\partial^2}{\partial \theta^2}
$$
and
$$
- e^{-i \phi} \frac{\partial}{\partial \theta} \left( e^{i \phi} i \cot \theta \frac{\partial}{\partial \phi}\right) = i \csc^2 \theta \frac{\partial}{\partial \phi} - i \cot \theta \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi}
$$
and so on.

It is a bit tedious, but just remember the "rule"
$$
\frac{\partial}{\partial x} f(x) g(y) = \frac{df}{dx} g(y) + f(x) g(y) \frac{\partial}{\partial x}
$$
 
I see, thank you very much
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top