- #1
Amad27
- 412
- 1
Hello:
Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$
Let $|x| < 1 \implies -1 < x < 1$
$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$
$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$
$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $
$(1) |x| < \delta_1$
$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$
$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$
Finally,
$\epsilon(\sin^2(-1) + 1) = \delta_1$
Therefore,
$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$
Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$
Let $|x| < 1 \implies -1 < x < 1$
$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$
$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$
$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $
$(1) |x| < \delta_1$
$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$
$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$
Finally,
$\epsilon(\sin^2(-1) + 1) = \delta_1$
Therefore,
$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$