Prove $\displaystyle \lim_{x \to 0}\frac{x}{1 + \sin^2(x)} = 0$

In summary: Additionally, the use of absolute values is not necessary and may complicate the argument unnecessarily. Overall, it's important to clearly state each step in the proof and make sure it logically follows from the previous steps.
  • #1
Amad27
412
1
Hello:

Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$

Let $|x| < 1 \implies -1 < x < 1$

$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $

$(1) |x| < \delta_1$

$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$

$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$

Finally,

$\epsilon(\sin^2(-1) + 1) = \delta_1$

Therefore,

$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$
 
Physics news on Phys.org
  • #2
Olok said:
Hello:

Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$

Let $|x| < 1 \implies -1 < x < 1$

$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $

$(1) |x| < \delta_1$

$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$

$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$

Finally,

$\epsilon(\sin^2(-1) + 1) = \delta_1$

Therefore,

$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$

Hi Olok,

I'm not sure what you're doing in you're analysis but here's an outline for proving the result. Observe that

\(\displaystyle \left|\frac{x}{1 + \sin^2 x}\right| \le |x| \quad \text{for all $x$}.\)

Hence, given $\varepsilon > 0$, setting $\delta = \varepsilon$ forces

\(\displaystyle \left|\frac{x}{1 + \sin^2 x} - 0\right| < \varepsilon\)

for all $x$ such that $0 < |x| < \delta$.

Fill in the details of this argument.
 
  • #3
Euge said:
Hi Olok,

I'm not sure what you're doing in you're analysis but here's an outline for proving the result. Observe that

\(\displaystyle \left|\frac{x}{1 + \sin^2 x}\right| \le |x| \quad \text{for all $x$}.\)

Hence, given $\varepsilon > 0$, setting $\delta = \varepsilon$ forces

\(\displaystyle \left|\frac{x}{1 + \sin^2 x} - 0\right| < \varepsilon\)

for all $x$ such that $0 < |x| < \delta$.

Fill in the details of this argument.

Yes I did recognize that.

I know you can conclude if $|x| = \delta = \epsilon$ it will conclude the proof, but I was thinking if my way could work.

Can you tell me, which part is confusing? I really want to try it the way I was doing it.

Thanks!
 
  • #4
Olok said:
Yes I did recognize that.

I know you can conclude if $|x| = \delta = \epsilon$ it will conclude the proof, but I was thinking if my way could work.

Can you tell me, which part is confusing? I really want to try it the way I was doing it.

Thanks!

One of the main issues is the inequality

\(\displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}\)

Since the sine is odd, the fractions on the left- and right-hand sides of the inequality are equal. So the above cannot hold.
 
  • #5


Therefore, by the definition of a limit, we can conclude that $\displaystyle \lim_{x \to 0}\frac{x}{1 + \sin^2(x)} = 0$.
 

FAQ: Prove $\displaystyle \lim_{x \to 0}\frac{x}{1 + \sin^2(x)} = 0$

What is the definition of a limit?

The limit of a function at a point is the value that the function approaches as the input approaches that point.

What is the formal definition of a limit?

Formally, the limit of a function f(x) as x approaches a is the value L such that for every positive number ε, there exists a corresponding positive number δ such that whenever 0 < |x - a| < δ, then |f(x) - L| < ε.

How do you prove a limit using the epsilon-delta definition?

To prove a limit using the epsilon-delta definition, you must show that for every ε > 0, there exists a δ > 0 such that whenever 0 < |x - a| < δ, then |f(x) - L| < ε. This is typically done by manipulating the expression |f(x) - L| and finding a suitable choice for δ in terms of ε.

Why is it important to prove limits?

Proving limits is important because it allows us to rigorously determine the behavior of a function at a specific point or as the input approaches a certain value. This can be useful in many areas of mathematics and science, such as in optimization problems and in determining the convergence of series.

How do you prove $\displaystyle \lim_{x \to 0}\frac{x}{1 + \sin^2(x)} = 0$?

To prove $\displaystyle \lim_{x \to 0}\frac{x}{1 + \sin^2(x)} = 0$, we must show that for every ε > 0, there exists a δ > 0 such that whenever 0 < |x| < δ, then |f(x) - 0| < ε. Using the fact that |sin(x)| ≤ 1, we can rewrite the expression as $\displaystyle \frac{x}{1 + \sin^2(x)} = \frac{x}{1 + \sin(x)^2} ≤ \frac{x}{1 + 1} = \frac{x}{2}$. Then, we can choose δ = 2ε and it follows that whenever 0 < |x| < δ, we have $\displaystyle \frac{x}{2} < \frac{2ε}{2} = ε$, proving the limit.

Similar threads

Replies
6
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Replies
2
Views
880
Replies
3
Views
1K
Back
Top