MHB Prove $\displaystyle \lim_{x \to 0}\frac{x}{1 + \sin^2(x)} = 0$

Amad27
Messages
409
Reaction score
1
Hello:

Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$

Let $|x| < 1 \implies -1 < x < 1$

$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $

$(1) |x| < \delta_1$

$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$

$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$

Finally,

$\epsilon(\sin^2(-1) + 1) = \delta_1$

Therefore,

$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$
 
Physics news on Phys.org
Olok said:
Hello:

Prove $\displaystyle \lim_{x \to 0} \frac{x}{1 + \sin^2(x)} - 0$

Let $|x| < 1 \implies -1 < x < 1$

$\sin^2(-1) + 1 < \sin^2(x) + 1 <\sin^2(1) + 2$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$

$\implies \displaystyle \frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} \implies \frac{1}{|\sin^2(-1) + 1|} > \frac{1}{|\sin^2(x) + 1|} \implies \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|} $

$(1) |x| < \delta_1$

$(2) \displaystyle \frac{1}{|\sin^2(x) + 1|} < \frac{1} {|\sin^2(-1) + 1|}$

$(3) \displaystyle \frac{|x|}{|\sin^2(x) + 1|} < \frac{\delta_1} {|\sin^2(-1) + 1|}$

Finally,

$\epsilon(\sin^2(-1) + 1) = \delta_1$

Therefore,

$\delta = \min(1,\epsilon \cdot (\sin^2(-1) + 1)) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \blacksquare$

Hi Olok,

I'm not sure what you're doing in you're analysis but here's an outline for proving the result. Observe that

$$\left|\frac{x}{1 + \sin^2 x}\right| \le |x| \quad \text{for all $x$}.$$

Hence, given $\varepsilon > 0$, setting $\delta = \varepsilon$ forces

$$\left|\frac{x}{1 + \sin^2 x} - 0\right| < \varepsilon$$

for all $x$ such that $0 < |x| < \delta$.

Fill in the details of this argument.
 
Euge said:
Hi Olok,

I'm not sure what you're doing in you're analysis but here's an outline for proving the result. Observe that

$$\left|\frac{x}{1 + \sin^2 x}\right| \le |x| \quad \text{for all $x$}.$$

Hence, given $\varepsilon > 0$, setting $\delta = \varepsilon$ forces

$$\left|\frac{x}{1 + \sin^2 x} - 0\right| < \varepsilon$$

for all $x$ such that $0 < |x| < \delta$.

Fill in the details of this argument.

Yes I did recognize that.

I know you can conclude if $|x| = \delta = \epsilon$ it will conclude the proof, but I was thinking if my way could work.

Can you tell me, which part is confusing? I really want to try it the way I was doing it.

Thanks!
 
Olok said:
Yes I did recognize that.

I know you can conclude if $|x| = \delta = \epsilon$ it will conclude the proof, but I was thinking if my way could work.

Can you tell me, which part is confusing? I really want to try it the way I was doing it.

Thanks!

One of the main issues is the inequality

$$\frac{1}{\sin^2(-1) + 1} > \frac{1}{\sin^2(x) + 1} > \frac{1}{\sin^2(1) + 1}$$

Since the sine is odd, the fractions on the left- and right-hand sides of the inequality are equal. So the above cannot hold.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.

Similar threads

Replies
6
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
Back
Top