MHB Prove No Integers Solve $ax^3+bx^2+cx+d=1$ for x=19,2 for x=62

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Polynomial
Click For Summary
The discussion centers on proving that no integers \( a, b, c, \) and \( d \) can satisfy the polynomial equation \( ax^3 + bx^2 + cx + d = 1 \) at \( x = 19 \) and \( x = 62 \). The equations derived from these conditions lead to a linear Diophantine equation: \( 231469a + 3461b + 53c = 1 \). Since \( a, b, \) and \( c \) are integers, the equation must have integer solutions. However, the coefficients indicate that the left-hand side cannot equal 1, thus proving no integer solutions exist. Therefore, it is concluded that there are no integers \( a, b, c, \) and \( d \) that satisfy the original polynomial conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that there are no integers $a,\,b,\,c$ and $d$ such that the polynomial $ax^3+bx^2+cx+d$ equals 1 at $x=19$ and 2 at $x=62$.
 
Mathematics news on Phys.org
Well, to start with, since $ax^3+ bx^2+ cx+ d$ is 1 when x 19, $a(19)^3+ b(19)^2+ 19x+ d= 6859a+ 361b+ 19c+ d= 1$, And since it is 2 when x= 62, $a(62)^3+ b(62)^2+ a(62)+ d= 238328a+ 3844b+ 62c+ d= 2$,

Subtracting the first from the second, 231469a+ 3461b+ 53c= 1. Since a, b, and c are integers that is a linear Diophantine equation.
 
we have $f(62) - f(19) = a (62^3-19^3) + b(62^2 - 19^2) + c(62-19) = 1$
or $(62-19)(a(62^2 + 62 * 19 + 19^2) + b(62+ 19) +c) = 1$
LHS is a multiple of 43 and RHS is 1 so this does not have integer solution
 
Country Boy said:
Well, to start with, since $ax^3+ bx^2+ cx+ d$ is 1 when x 19, $a(19)^3+ b(19)^2+ 19x+ d= 6859a+ 361b+ 19c+ d= 1$, And since it is 2 when x= 62, $a(62)^3+ b(62)^2+ a(62)+ d= 238328a+ 3844b+ 62c+ d= 2$,

Subtracting the first from the second, 231469a+ 3461b+ 53c= 1. Since a, b, and c are integers that is a linear Diophantine equation.
because this is a challenge question you are required to answer it fully . this is not a question for help
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
Replies
9
Views
3K
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K