- #1
debrajr
- 4
- 0
Prove that the paraboloids:
\(\displaystyle \frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=\frac{2z}{c_1}\);
\(\displaystyle \frac{x^2}{a_2^2}+\frac{y^2}{b_2^2}=\frac{2z}{c_2}\);
\(\displaystyle \frac{x^2}{a_3^2}+\frac{y^2}{b_3^2}=\frac{2z}{c_3}\)
Have a common tangent plane if:
\(\displaystyle \begin{bmatrix}a_1^2 & a_2^2 & a_3^2\\ b_1^2 & b_2^2 & b_3^2\\ c_1 & c_2 & c_3\end{bmatrix}=0\)
Here
\(\displaystyle a_i, b_i, c_i \in \Bbb{R} \left\{0\right\}\)
\(\displaystyle \frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=\frac{2z}{c_1}\);
\(\displaystyle \frac{x^2}{a_2^2}+\frac{y^2}{b_2^2}=\frac{2z}{c_2}\);
\(\displaystyle \frac{x^2}{a_3^2}+\frac{y^2}{b_3^2}=\frac{2z}{c_3}\)
Have a common tangent plane if:
\(\displaystyle \begin{bmatrix}a_1^2 & a_2^2 & a_3^2\\ b_1^2 & b_2^2 & b_3^2\\ c_1 & c_2 & c_3\end{bmatrix}=0\)
Here
\(\displaystyle a_i, b_i, c_i \in \Bbb{R} \left\{0\right\}\)