- #1
Guest2
- 193
- 0
How do I prove the following theorem?
If $A \subset B$ then $P(A) \le P(B)$ and $P(B-A) = P(B)-P(A)$
$A$ and $B$ are events and $P$ is the probability function.
What I tried (but not sure if it's right or not):
$P(B) = P((B\setminus A) \cup (B \cap A)) = P(B\setminus A)+P(B \cap A) \ge 0+P(B \cap A) \ge P(A) $
Therefore $P(B) - P(A) \ge 0$. Hence $P(B) \ge P(A)$.
If $A \subset B$ then $P(A) \le P(B)$ and $P(B-A) = P(B)-P(A)$
$A$ and $B$ are events and $P$ is the probability function.
What I tried (but not sure if it's right or not):
$P(B) = P((B\setminus A) \cup (B \cap A)) = P(B\setminus A)+P(B \cap A) \ge 0+P(B \cap A) \ge P(A) $
Therefore $P(B) - P(A) \ge 0$. Hence $P(B) \ge P(A)$.
Last edited: