- #1
Fantini
Gold Member
MHB
- 268
- 0
Hello everybody. Here's the problem:
$$\text{Let } R \text{ be a ring with identity. Let }a \in R \text{ and suppose that exists an unique } a' \in R \text{ such that }a a' =1. \text{ Prove that } a'a=1.$$
My solution:
Since we have an identity, it has an inverse (itself), which means we can do
$$(a a')^{-1} = 1^{-1} = 1,$$
but $(a a')^{-1} = (a')^{-1} a^{-1} = 1$. From this, we can multiply once through the right by $a$ getting $(a')^{-1} a^{-1} a = 1 a = a$ and from that $(a')^{-1} = a$. Finally, multiplying through the left by $a'$ we get $a' (a')^{-1} = 1 = a' a$.
Am I correct? I am particularly uneasy about stating that $(aa')^{-1} = (a')^{-1} a^{-1}$.
$$\text{Let } R \text{ be a ring with identity. Let }a \in R \text{ and suppose that exists an unique } a' \in R \text{ such that }a a' =1. \text{ Prove that } a'a=1.$$
My solution:
Since we have an identity, it has an inverse (itself), which means we can do
$$(a a')^{-1} = 1^{-1} = 1,$$
but $(a a')^{-1} = (a')^{-1} a^{-1} = 1$. From this, we can multiply once through the right by $a$ getting $(a')^{-1} a^{-1} a = 1 a = a$ and from that $(a')^{-1} = a$. Finally, multiplying through the left by $a'$ we get $a' (a')^{-1} = 1 = a' a$.
Am I correct? I am particularly uneasy about stating that $(aa')^{-1} = (a')^{-1} a^{-1}$.